Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 1;18(5):1146–1158. doi: 10.1093/emboj/18.5.1146

Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum.

K F Storch 1, J Rudolph 1, D Oesterhelt 1
PMCID: PMC1171206  PMID: 10064582

Abstract

A new metabolic signaling pathway for arginine, both a chemoeffector and a fermentative energy source, is described for Halobacterium salinarum. Systematic screening of 80+ potentially chemotactic compounds with two behavioral assays identified leucine, isoleucine, valine, methionine, cysteine, arginine and several peptides as strong chemoattractants. Deletion analysis of a number of potential halobacterial transducer genes led to the identification of Car, a specific cytoplasmic arginine transducer which lacks transmembrane helices and was biochemically shown to be localized in the cytoplasm. Flow assays were used to show specific adaptive responses to arginine and ornithine in wild-type but not Deltacar cells, demonstrating the role of Car in sensing arginine. The signaling pathway from external arginine to the flagellar motor of the cell involves an arginine:ornithine antiporter which was quantitatively characterized for its transport kinetics and inhibitors. By compiling the chemotactic behavior, the adaptive responses and the characteristics of the arginine:ornithine antiporter to arginine and its analogs, we now understand how the combination of arginine uptake and its metabolic conversion is required to build an effective sensing system. In both bacteria and the archaea this is the first chemoeffector molecule of a soluble methylatable transducer to be identified.

Full Text

The Full Text of this article is available as a PDF (585.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
  2. Adler J. Chemotaxis in bacteria. Annu Rev Biochem. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. [DOI] [PubMed] [Google Scholar]
  3. Alam M., Lebert M., Oesterhelt D., Hazelbauer G. L. Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J. 1989 Feb;8(2):631–639. doi: 10.1002/j.1460-2075.1989.tb03418.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armitage J. P., Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? Microbiology. 1997 Dec;143(Pt 12):3671–3682. doi: 10.1099/00221287-143-12-3671. [DOI] [PubMed] [Google Scholar]
  5. Barak R., Giebel I., Eisenbach M. The specificity of fumarate as a switching factor of the bacterial flagellar motor. Mol Microbiol. 1996 Jan;19(1):139–144. doi: 10.1046/j.1365-2958.1996.365889.x. [DOI] [PubMed] [Google Scholar]
  6. Biemann H. P., Koshland D. E., Jr Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity. Biochemistry. 1994 Jan 25;33(3):629–634. doi: 10.1021/bi00169a002. [DOI] [PubMed] [Google Scholar]
  7. Brooun A., Bell J., Freitas T., Larsen R. W., Alam M. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J Bacteriol. 1998 Apr;180(7):1642–1646. doi: 10.1128/jb.180.7.1642-1646.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brooun A., Zhang W., Alam M. Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeon Halobacterium salinarium. J Bacteriol. 1997 May;179(9):2963–2968. doi: 10.1128/jb.179.9.2963-2968.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cline S. W., Lam W. L., Charlebois R. L., Schalkwyk L. C., Doolittle W. F. Transformation methods for halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):148–152. doi: 10.1139/m89-022. [DOI] [PubMed] [Google Scholar]
  10. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danner S., Soppa J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol. 1996 Mar;19(6):1265–1276. doi: 10.1111/j.1365-2958.1996.tb02471.x. [DOI] [PubMed] [Google Scholar]
  12. Driessen A. J., Poolman B., Kiewiet R., Konings W. Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6093–6097. doi: 10.1073/pnas.84.17.6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gamper M., Zimmermann A., Haas D. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J Bacteriol. 1991 Aug;173(15):4742–4750. doi: 10.1128/jb.173.15.4742-4750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartmann R., Sickinger H. D., Oesterhelt D. Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3821–3825. doi: 10.1073/pnas.77.7.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  16. Holmes M. L., Nuttall S. D., Dyall-Smith M. L. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J Bacteriol. 1991 Jun;173(12):3807–3813. doi: 10.1128/jb.173.12.3807-3813.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hou S., Brooun A., Yu H. S., Freitas T., Alam M. Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum. J Bacteriol. 1998 Mar;180(6):1600–1602. doi: 10.1128/jb.180.6.1600-1602.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jacobs M. H., van der Heide T., Tolner B., Driessen A. J., Konings W. N. Expression of the gltP gene of Escherichia coli in a glutamate transport-deficient mutant of Rhodobacter sphaeroides restores chemotaxis to glutamate. Mol Microbiol. 1995 Nov;18(4):641–647. doi: 10.1111/j.1365-2958.1995.mmi_18040641.x. [DOI] [PubMed] [Google Scholar]
  19. Jeziore-Sassoon Y., Hamblin P. A., Bootle-Wilbraham C. A., Poole P. S., Armitage J. P. Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides. Microbiology. 1998 Jan;144(Pt 1):229–239. doi: 10.1099/00221287-144-1-229. [DOI] [PubMed] [Google Scholar]
  20. Kagramanova V. K., Mankin A. S., Baratova L. A., Bogdanov A. A. The 3'-terminal nucleotide sequence of the Halobacterium halobium 16 S rRNA. FEBS Lett. 1982 Jul 19;144(1):177–180. doi: 10.1016/0014-5793(82)80595-4. [DOI] [PubMed] [Google Scholar]
  21. Kearns D. B., Shimkets L. J. Chemotaxis in a gliding bacterium. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11957–11962. doi: 10.1073/pnas.95.20.11957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kehry M. R., Doak T. G., Dahlquist F. W. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J Biol Chem. 1984 Oct 10;259(19):11828–11835. [PubMed] [Google Scholar]
  23. Krah M., Marwan W., Verméglio A., Oesterhelt D. Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer HtrI. EMBO J. 1994 May 1;13(9):2150–2155. doi: 10.1002/j.1460-2075.1994.tb06491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lam W. L., Doolittle W. F. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. J Biol Chem. 1992 Mar 25;267(9):5829–5834. [PubMed] [Google Scholar]
  25. Le Moual H., Koshland D. E., Jr Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol. 1996 Aug 30;261(4):568–585. doi: 10.1006/jmbi.1996.0483. [DOI] [PubMed] [Google Scholar]
  26. Lux R., Jahreis K., Bettenbrock K., Parkinson J. S., Lengeler J. W. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11583–11587. doi: 10.1073/pnas.92.25.11583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marwan W., Schäfer W., Oesterhelt D. Signal transduction in Halobacterium depends on fumarate. EMBO J. 1990 Feb;9(2):355–362. doi: 10.1002/j.1460-2075.1990.tb08118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mesibov R., Adler J. Chemotaxis toward amino acids in Escherichia coli. J Bacteriol. 1972 Oct;112(1):315–326. doi: 10.1128/jb.112.1.315-326.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Monstadt G. M., Holldorf A. W. Arginine deiminase from Halobacterium salinarium. Purification and properties. Biochem J. 1991 Feb 1;273(Pt 3):739–745. doi: 10.1042/bj2730739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Montrone M., Eisenbach M., Oesterhelt D., Marwan W. Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate. J Bacteriol. 1998 Jul;180(13):3375–3380. doi: 10.1128/jb.180.13.3375-3380.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Montrone M., Marwan W., Grünberg H., Musseleck S., Starostzik C., Oesterhelt D. Sensory rhodopsin-controlled release of the switch factor fumarate in Halobacterium salinarium. Mol Microbiol. 1993 Dec;10(5):1077–1085. doi: 10.1111/j.1365-2958.1993.tb00978.x. [DOI] [PubMed] [Google Scholar]
  32. Oesterhelt D., Krippahl G. Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol (Paris) 1983 Jul-Aug;134B(1):137–150. doi: 10.1016/s0769-2609(83)80101-x. [DOI] [PubMed] [Google Scholar]
  33. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  34. Olson K. D., Spudich J. L. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle. Biophys J. 1993 Dec;65(6):2578–2585. doi: 10.1016/S0006-3495(93)81295-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ottemann K. M., Koshland D. E., Jr Converting a transmembrane receptor to a soluble receptor: recognition domain to effector domain signaling after excision of the transmembrane domain. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11201–11204. doi: 10.1073/pnas.94.21.11201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reader R. W., Tso W. W., Springer M. S., Goy M. F., Adler J. Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli. J Gen Microbiol. 1979 Apr;111(2):363–374. doi: 10.1099/00221287-111-2-363. [DOI] [PubMed] [Google Scholar]
  37. Rudolph J., Nordmann B., Storch K. F., Gruenberg H., Rodewald K., Oesterhelt D. A family of halobacterial transducer proteins. FEMS Microbiol Lett. 1996 Jun 1;139(2-3):161–168. doi: 10.1111/j.1574-6968.1996.tb08197.x. [DOI] [PubMed] [Google Scholar]
  38. Rudolph J., Oesterhelt D. Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J. 1995 Feb 15;14(4):667–673. doi: 10.1002/j.1460-2075.1995.tb07045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rudolph J., Oesterhelt D. Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J Mol Biol. 1996 May 17;258(4):548–554. doi: 10.1006/jmbi.1996.0267. [DOI] [PubMed] [Google Scholar]
  40. Rudolph J., Tolliday N., Schmitt C., Schuster S. C., Oesterhelt D. Phosphorylation in halobacterial signal transduction. EMBO J. 1995 Sep 1;14(17):4249–4257. doi: 10.1002/j.1460-2075.1995.tb00099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ruepp A., Soppa J. Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. J Bacteriol. 1996 Aug;178(16):4942–4947. doi: 10.1128/jb.178.16.4942-4947.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H. Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology. 1997 Oct;143(Pt 10):3223–3229. doi: 10.1099/00221287-143-10-3223. [DOI] [PubMed] [Google Scholar]
  45. Taylor B. L., Zhulin I. B. In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol. 1998 May;28(4):683–690. doi: 10.1046/j.1365-2958.1998.00835.x. [DOI] [PubMed] [Google Scholar]
  46. Tso W. W., Adler J. Negative chemotaxis in Escherichia coli. J Bacteriol. 1974 May;118(2):560–576. doi: 10.1128/jb.118.2.560-576.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Verhoogt H. J., Smit H., Abee T., Gamper M., Driessen A. J., Haas D., Konings W. N. arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J Bacteriol. 1992 Mar;174(5):1568–1573. doi: 10.1128/jb.174.5.1568-1573.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ward M. J., Harrison D. M., Ebner M. J., Armitage J. P. Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol Microbiol. 1995 Oct;18(1):115–121. doi: 10.1111/j.1365-2958.1995.mmi_18010115.x. [DOI] [PubMed] [Google Scholar]
  49. Ward M. J., Zusman D. R. Regulation of directed motility in Myxococcus xanthus. Mol Microbiol. 1997 Jun;24(5):885–893. doi: 10.1046/j.1365-2958.1997.4261783.x. [DOI] [PubMed] [Google Scholar]
  50. Yao V. J., Spudich J. L. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11915–11919. doi: 10.1073/pnas.89.24.11915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang W., Brooun A., McCandless J., Banda P., Alam M. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4649–4654. doi: 10.1073/pnas.93.10.4649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhang W., Brooun A., Mueller M. M., Alam M. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8230–8235. doi: 10.1073/pnas.93.16.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES