Abstract
Ornithine decarboxylase (ODC) is highly up-regulated in proliferating and transforming cells. Here we show that upon induction, an initial cytosolic increase of ODC is followed by translocation of a fraction of the enzyme to the surface membrane. ODC membrane translocation is mediated by a p47(phox) membrane-targeting motif-related sequence, as indicated by reduced ODC activity in the membrane fraction of cells treated with a competing, ODC-derived (amino acids 165-172) peptide, RLSVKFGA, which is homologous to the p47(phox) membrane-targeting sequence. p47(phox) membrane translocation is known to be dependent on the phosphorylation of the targeting motif. Analogously, overexpressed ODC.S167A, a mutant ODC lacking the putative phosphorylation site Ser67, is unable to move to the surface membrane. Cells blocked with the RLSVKFGA peptide showed defective transformation, indicating that the motif-mediated translocation of ODC is prerequisite to its biological function. Constitutive targeting of ODC to the membrane using a plasmid encoding the chimeric protein, wild-type ODC with C-terminal linkage to the farnesylation motif of K-ras, caused impaired cytokinesis with an accumulation of polykaryotic cells. Impaired cytokinesis confirms that ODC is involved in mitotic cytoskeletal rearrangement events and pinpoints the importance of relevant membrane targeting to its physiological function.
Full Text
The Full Text of this article is available as a PDF (541.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auvinen M., Laine A., Paasinen-Sohns A., Kangas A., Kangas L., Saksela O., Andersson L. C., Hölttä E. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res. 1997 Jul 15;57(14):3016–3025. [PubMed] [Google Scholar]
- Auvinen M., Paasinen-Sohns A., Hirai H., Andersson L. C., Hölttä E. Ornithine decarboxylase- and ras-induced cell transformations: reversal by protein tyrosine kinase inhibitors and role of pp130CAS. Mol Cell Biol. 1995 Dec;15(12):6513–6525. doi: 10.1128/mcb.15.12.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auvinen M., Paasinen A., Andersson L. C., Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature. 1992 Nov 26;360(6402):355–358. doi: 10.1038/360355a0. [DOI] [PubMed] [Google Scholar]
- Bokoch G. M., Bohl B. P., Chuang T. H. Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem. 1994 Dec 16;269(50):31674–31679. [PubMed] [Google Scholar]
- Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifford A., Morgan D., Yuspa S. H., Soler A. P., Gilmour S. Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res. 1995 Apr 15;55(8):1680–1686. [PubMed] [Google Scholar]
- Coleman C. S., Stanley B. A., Pegg A. E. Effect of mutations at active site residues on the activity of ornithine decarboxylase and its inhibition by active site-directed irreversible inhibitors. J Biol Chem. 1993 Nov 25;268(33):24572–24579. [PubMed] [Google Scholar]
- De Leo F. R., Ulman K. V., Davis A. R., Jutila K. L., Quinn M. T. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem. 1996 Jul 19;271(29):17013–17020. doi: 10.1074/jbc.271.29.17013. [DOI] [PubMed] [Google Scholar]
- Djurhuus R. Ornithine decarboxylase (EC 4.1.1.17) assay based upon the retention of putrescine by a strong cation-exchange paper. Anal Biochem. 1981 May 15;113(2):352–355. doi: 10.1016/0003-2697(81)90088-9. [DOI] [PubMed] [Google Scholar]
- El Benna J., Faust R. P., Johnson J. L., Babior B. M. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem. 1996 Mar 15;271(11):6374–6378. doi: 10.1074/jbc.271.11.6374. [DOI] [PubMed] [Google Scholar]
- Fredlund J. O., Johansson M. C., Dahlberg E., Oredsson S. M. Ornithine decarboxylase and S-adenosylmethionine decarboxylase expression during the cell cycle of Chinese hamster ovary cells. Exp Cell Res. 1995 Jan;216(1):86–92. doi: 10.1006/excr.1995.1011. [DOI] [PubMed] [Google Scholar]
- Ginty D. D., Seidel E. R. Polyamine-dependent growth and calmodulin-regulated induction of ornithine decarboxylase. Am J Physiol. 1989 Feb;256(2 Pt 1):G342–G348. doi: 10.1152/ajpgi.1989.256.2.G342. [DOI] [PubMed] [Google Scholar]
- Groblewski G. E., Ways D. K., Seidel E. R. Protein kinase C regulation of IEC-6 cell ornithine decarboxylase. Am J Physiol. 1992 Nov;263(5 Pt 1):G742–G749. doi: 10.1152/ajpgi.1992.263.5.G742. [DOI] [PubMed] [Google Scholar]
- Hall H., Williams E. J., Moore S. E., Walsh F. S., Prochiantz A., Doherty P. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr Biol. 1996 May 1;6(5):580–587. doi: 10.1016/s0960-9822(02)00544-4. [DOI] [PubMed] [Google Scholar]
- Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
- Hickok N. J., Seppänen P. J., Gunsalus G. L., Jänne O. A. Complete amino acid sequence of human ornithine decarboxylase deduced from complementary DNA. DNA. 1987 Jun;6(3):179–187. doi: 10.1089/dna.1987.6.179. [DOI] [PubMed] [Google Scholar]
- Knaus U. G., Morris S., Dong H. J., Chernoff J., Bokoch G. M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science. 1995 Jul 14;269(5221):221–223. doi: 10.1126/science.7618083. [DOI] [PubMed] [Google Scholar]
- Lankester A. C., van Schijndel G. M., Rood P. M., Verhoeven A. J., van Lier R. A. B cell antigen receptor cross-linking induces tyrosine phosphorylation and membrane translocation of a multimeric Shc complex that is augmented by CD19 co-ligation. Eur J Immunol. 1994 Nov;24(11):2818–2825. doi: 10.1002/eji.1830241136. [DOI] [PubMed] [Google Scholar]
- Matowe W. C., Ginsberg J. Increased membrane-bound protein kinase C in porcine thyroid cells following TSH exposure. Clin Invest Med. 1995 Jun;18(3):186–192. [PubMed] [Google Scholar]
- Matsufuji S., Fujita K., Kameji T., Kanamoto R., Murakami Y., Hayashi S. A monoclonal antibody to rat liver ornithine decarboxylase. J Biochem. 1984 Nov;96(5):1525–1530. doi: 10.1093/oxfordjournals.jbchem.a134981. [DOI] [PubMed] [Google Scholar]
- McCoy M. S., Bargmann C. I., Weinberg R. A. Human colon carcinoma Ki-ras2 oncogene and its corresponding proto-oncogene. Mol Cell Biol. 1984 Aug;4(8):1577–1582. doi: 10.1128/mcb.4.8.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moshier J. A., Dosescu J., Skunca M., Luk G. D. Transformation of NIH/3T3 cells by ornithine decarboxylase overexpression. Cancer Res. 1993 Jun 1;53(11):2618–2622. [PubMed] [Google Scholar]
- Mäkelä T. P., Partanen J., Schwab M., Alitalo K. Plasmid pLTRpoly: a versatile high-efficiency mammalian expression vector. Gene. 1992 Sep 10;118(2):293–294. doi: 10.1016/0378-1119(92)90203-2. [DOI] [PubMed] [Google Scholar]
- Nauseef W. M., McCormick S., Renee J., Leidal K. G., Clark R. A. Functional domain in an arginine-rich carboxyl-terminal region of p47phox. J Biol Chem. 1993 Nov 5;268(31):23646–23651. [PubMed] [Google Scholar]
- Nishiyama M., Matsufuji S., Kanamoto R., Takano M., Murakami Y., Hayashi S. Two-step purification of mouse kidney ornithine decarboxylase. Prep Biochem. 1988;18(2):227–238. doi: 10.1080/00327488808062524. [DOI] [PubMed] [Google Scholar]
- Parsons J. T. Integrin-mediated signalling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol. 1996 Apr;8(2):146–152. doi: 10.1016/s0955-0674(96)80059-7. [DOI] [PubMed] [Google Scholar]
- Pati U. K. Novel vectors for expression of cDNA encoding epitope-tagged proteins in mammalian cells. Gene. 1992 May 15;114(2):285–288. doi: 10.1016/0378-1119(92)90589-h. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
- Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
- Tisch D., Sharoni Y., Danilenko M., Aviram I. The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues. Biochem J. 1995 Sep 1;310(Pt 2):715–719. doi: 10.1042/bj3100715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokunaga F., Goto T., Koide T., Murakami Y., Hayashi S., Tamura T., Tanaka K., Ichihara A. ATP- and antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26 S proteasome. J Biol Chem. 1994 Jul 1;269(26):17382–17385. [PubMed] [Google Scholar]
- Woodman R. C., Ruedi J. M., Jesaitis A. J., Okamura N., Quinn M. T., Smith R. M., Curnutte J. T., Babior B. M. Respiratory burst oxidase and three of four oxidase-related polypeptides are associated with the cytoskeleton of human neutrophils. J Clin Invest. 1991 Apr;87(4):1345–1351. doi: 10.1172/JCI115138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyke J. A., Beamand J. A., Varmus H. E. Factors affecting phenotypic reversion of rat cells transformed by avian sarcoma virus. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 2):1065–1075. doi: 10.1101/sqb.1980.044.01.115. [DOI] [PubMed] [Google Scholar]
- el Benna J., Ruedi J. M., Babior B. M. Cytosolic guanine nucleotide-binding protein Rac2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47phox and p67phox to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem. 1994 Mar 4;269(9):6729–6734. [PubMed] [Google Scholar]