Abstract
We have examined neuroanatomical, biochemical and endocrine parameters and spatial learning in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor (nAChR) during ageing. Aged beta2(-/-) mutant mice showed region-specific alterations in cortical regions, including neocortical hypotrophy, loss of hippocampal pyramidal neurons, astro- and microgliosis and elevation of serum corticosterone levels. Whereas adult mutant and control animals performed well in the Morris maze, 22- to 24-month-old beta2(-/-) mice were significantly impaired in spatial learning. These data show that beta2 subunit-containing nAChRs can contribute to both neuronal survival and maintenance of cognitive performance during ageing. beta2(-/-) mice may thus serve as one possible animal model for some of the cognitive deficits and degenerative processes which take place during physiological ageing and in Alzheimer's disease, particularly those associated with dysfunction of the cholinergic system.
Full Text
The Full Text of this article is available as a PDF (644.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdulla F. A., Calaminici M. R., Stephenson J. D., Sinden J. D. Chronic treatments with cholinoceptor drugs influence spatial learning in rats. Psychopharmacology (Berl) 1993;111(4):508–511. doi: 10.1007/BF02253544. [DOI] [PubMed] [Google Scholar]
- Aubert I., Araujo D. M., Cécyre D., Robitaille Y., Gauthier S., Quirion R. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases. J Neurochem. 1992 Feb;58(2):529–541. doi: 10.1111/j.1471-4159.1992.tb09752.x. [DOI] [PubMed] [Google Scholar]
- Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
- Belluardo N., Blum M., Mudo G., Andbjer B., Fuxe K. Acute intermittent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel- and diencephalon of the rat. Neuroscience. 1998 Apr;83(3):723–740. doi: 10.1016/s0306-4522(97)00323-0. [DOI] [PubMed] [Google Scholar]
- Benfenati F., Cimino M., Agnati L. F., Fuxe K. Quantitative autoradiography of central neurotransmitter receptors: methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol Scand. 1986 Oct;128(2):129–146. doi: 10.1111/j.1748-1716.1986.tb07960.x. [DOI] [PubMed] [Google Scholar]
- Borlongan C. V., Shytle R. D., Ross S. D., Shimizu T., Freeman T. B., Cahill D. W., Sanberg P. R. (-)-nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol. 1995 Dec;136(2):261–265. doi: 10.1006/exnr.1995.1103. [DOI] [PubMed] [Google Scholar]
- Breitner J. C. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease. Annu Rev Med. 1996;47:401–411. doi: 10.1146/annurev.med.47.1.401. [DOI] [PubMed] [Google Scholar]
- Brioni J. D., O'Neill A. B., Kim D. J., Decker M. W. Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol. 1993 Jul 6;238(1):1–8. doi: 10.1016/0014-2999(93)90498-7. [DOI] [PubMed] [Google Scholar]
- Caggiula A. R., Epstein L. H., Antelman S. M., Saylor S. S., Perkins K. A., Knopf S., Stiller R. Conditioned tolerance to the anorectic and corticosterone-elevating effects of nicotine. Pharmacol Biochem Behav. 1991 Sep;40(1):53–59. doi: 10.1016/0091-3057(91)90319-w. [DOI] [PubMed] [Google Scholar]
- Calhoun M. E., Wiederhold K. H., Abramowski D., Phinney A. L., Probst A., Sturchler-Pierrat C., Staufenbiel M., Sommer B., Jucker M. Neuron loss in APP transgenic mice. Nature. 1998 Oct 22;395(6704):755–756. doi: 10.1038/27351. [DOI] [PubMed] [Google Scholar]
- Chappell J., McMahan R., Chiba A., Gallagher M. A re-examination of the role of basal forebrain cholinergic neurons in spatial working memory. Neuropharmacology. 1998 Apr-May;37(4-5):481–487. doi: 10.1016/s0028-3908(98)00032-x. [DOI] [PubMed] [Google Scholar]
- Clarke P. B., Reuben M. Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol. 1996 Feb;117(4):595–606. doi: 10.1111/j.1476-5381.1996.tb15232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocchi D. Age-related alterations in gonadotropin, adrenocorticotropin and growth hormone secretion. Aging (Milano) 1992 Jun;4(2):103–113. doi: 10.1007/BF03324075. [DOI] [PubMed] [Google Scholar]
- Coleman P. D., Flood D. G. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol Aging. 1987 Nov-Dec;8(6):521–545. doi: 10.1016/0197-4580(87)90127-8. [DOI] [PubMed] [Google Scholar]
- Decker M. W., Curzon P., Brioni J. D., Arnerić S. P. Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol. 1994 Aug 11;261(1-2):217–222. doi: 10.1016/0014-2999(94)90323-9. [DOI] [PubMed] [Google Scholar]
- Decker M. W. The effects of aging on hippocampal and cortical projections of the forebrain cholinergic system. Brain Res. 1987 Nov;434(4):423–438. doi: 10.1016/0165-0173(87)90007-5. [DOI] [PubMed] [Google Scholar]
- Elrod K., Buccafusco J. J. Correlation of the amnestic effects of nicotinic antagonists with inhibition of regional brain acetylcholine synthesis in rats. J Pharmacol Exp Ther. 1991 Aug;258(2):403–409. [PubMed] [Google Scholar]
- Gallagher M., Colombo P. J. Ageing: the cholinergic hypothesis of cognitive decline. Curr Opin Neurobiol. 1995 Apr;5(2):161–168. doi: 10.1016/0959-4388(95)80022-0. [DOI] [PubMed] [Google Scholar]
- Gallagher M., Nicolle M. M. Animal models of normal aging: relationship between cognitive decline and markers in hippocampal circuitry. Behav Brain Res. 1993 Nov 30;57(2):155–162. doi: 10.1016/0166-4328(93)90131-9. [DOI] [PubMed] [Google Scholar]
- Gower A. J., Lamberty Y. The aged mouse as a model of cognitive decline with special emphasis on studies in NMRI mice. Behav Brain Res. 1993 Nov 30;57(2):163–173. doi: 10.1016/0166-4328(93)90132-a. [DOI] [PubMed] [Google Scholar]
- Happe H. K., Murrin L. C. High-affinity choline transport sites: use of [3H]hemicholinium-3 as a quantitative marker. J Neurochem. 1993 Apr;60(4):1191–1201. doi: 10.1111/j.1471-4159.1993.tb03277.x. [DOI] [PubMed] [Google Scholar]
- Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 1997 Apr;20(4):154–159. doi: 10.1016/s0166-2236(96)01030-2. [DOI] [PubMed] [Google Scholar]
- Hill J. A., Jr, Zoli M., Bourgeois J. P., Changeux J. P. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci. 1993 Apr;13(4):1551–1568. doi: 10.1523/JNEUROSCI.13-04-01551.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvik M. E. Beneficial effects of nicotine. Br J Addict. 1991 May;86(5):571–575. doi: 10.1111/j.1360-0443.1991.tb01810.x. [DOI] [PubMed] [Google Scholar]
- Jucker M., Walker L. C., Kuo H., Tian M., Ingram D. K. Age-related fibrillar deposits in brains of C57BL/6 mice. A review of localization, staining characteristics, and strain specificity. Mol Neurobiol. 1994 Aug-Dec;9(1-3):125–133. doi: 10.1007/BF02816112. [DOI] [PubMed] [Google Scholar]
- Kihara T., Shimohama S., Urushitani M., Sawada H., Kimura J., Kume T., Maeda T., Akaike A. Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res. 1998 May 11;792(2):331–334. doi: 10.1016/s0006-8993(98)00138-3. [DOI] [PubMed] [Google Scholar]
- Kohama S. G., Goss J. R., Finch C. E., McNeill T. H. Increases of glial fibrillary acidic protein in the aging female mouse brain. Neurobiol Aging. 1995 Jan-Feb;16(1):59–67. doi: 10.1016/0197-4580(95)80008-f. [DOI] [PubMed] [Google Scholar]
- Kása P., Rakonczay Z., Gulya K. The cholinergic system in Alzheimer's disease. Prog Neurobiol. 1997 Aug;52(6):511–535. doi: 10.1016/s0301-0082(97)00028-2. [DOI] [PubMed] [Google Scholar]
- Le Novère N., Changeux J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995 Feb;40(2):155–172. doi: 10.1007/BF00167110. [DOI] [PubMed] [Google Scholar]
- Levin E. D. Nicotinic systems and cognitive function. Psychopharmacology (Berl) 1992;108(4):417–431. doi: 10.1007/BF02247415. [DOI] [PubMed] [Google Scholar]
- Maggio R., Riva M., Vaglini F., Fornai F., Racagni G., Corsini G. U. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism. J Neural Transm (Vienna) 1997;104(10):1113–1123. doi: 10.1007/BF01273324. [DOI] [PubMed] [Google Scholar]
- Marin P., Hamon B., Glowinski J., Premont J. Nicotine-induced inhibition of neuronal phospholipase A2. J Pharmacol Exp Ther. 1997 Mar;280(3):1277–1283. [PubMed] [Google Scholar]
- Marin P., Maus M., Desagher S., Glowinski J., Prémont J. Nicotine protects cultured striatal neurones against N-methyl-D-aspartate receptor-mediated neurotoxicity. Neuroreport. 1994 Oct 3;5(15):1977–1980. doi: 10.1097/00001756-199410000-00035. [DOI] [PubMed] [Google Scholar]
- McEwen B. S., Sapolsky R. M. Stress and cognitive function. Curr Opin Neurobiol. 1995 Apr;5(2):205–216. doi: 10.1016/0959-4388(95)80028-x. [DOI] [PubMed] [Google Scholar]
- McGurk S. R., Levin E. D., Butcher L. L. Impairment of radial-arm maze performance in rats following lesions involving the cholinergic medial pathway: reversal by arecoline and differential effects of muscarinic and nicotinic antagonists. Neuroscience. 1991;44(1):137–147. doi: 10.1016/0306-4522(91)90256-n. [DOI] [PubMed] [Google Scholar]
- McGurk S. R., Levin E. D., Butcher L. L. Radial-arm maze performance in rats is impaired by a combination of nicotinic-cholinergic and D2 dopaminergic antagonist drugs. Psychopharmacology (Berl) 1989;99(3):371–373. doi: 10.1007/BF00445560. [DOI] [PubMed] [Google Scholar]
- McMillian M. K., Thai L., Hong J. S., O'Callaghan J. P., Pennypacker K. R. Brain injury in a dish: a model for reactive gliosis. Trends Neurosci. 1994 Apr;17(4):138–142. doi: 10.1016/0166-2236(94)90086-8. [DOI] [PubMed] [Google Scholar]
- Morris R. G. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci. 1989 Sep;9(9):3040–3057. doi: 10.1523/JNEUROSCI.09-09-03040.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordberg A., Winblad B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett. 1986 Dec 3;72(1):115–119. doi: 10.1016/0304-3940(86)90629-4. [DOI] [PubMed] [Google Scholar]
- Perry V. H., Matyszak M. K., Fearn S. Altered antigen expression of microglia in the aged rodent CNS. Glia. 1993 Jan;7(1):60–67. doi: 10.1002/glia.440070111. [DOI] [PubMed] [Google Scholar]
- Picciotto M. R., Zoli M., Léna C., Bessis A., Lallemand Y., Le Novère N., Vincent P., Pich E. M., Brûlet P., Changeux J. P. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature. 1995 Mar 2;374(6517):65–67. doi: 10.1038/374065a0. [DOI] [PubMed] [Google Scholar]
- Picciotto M. R., Zoli M., Rimondini R., Léna C., Marubio L. M., Pich E. M., Fuxe K., Changeux J. P. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature. 1998 Jan 8;391(6663):173–177. doi: 10.1038/34413. [DOI] [PubMed] [Google Scholar]
- Robbins T. W., McAlonan G., Muir J. L., Everitt B. J. Cognitive enhancers in theory and practice: studies of the cholinergic hypothesis of cognitive deficits in Alzheimer's disease. Behav Brain Res. 1997 Feb;83(1-2):15–23. doi: 10.1016/s0166-4328(97)86040-8. [DOI] [PubMed] [Google Scholar]
- Robertson R. T., Gallardo K. A., Claytor K. J., Ha D. H., Ku K. H., Yu B. P., Lauterborn J. C., Wiley R. G., Yu J., Gall C. M. Neonatal treatment with 192 IgG-saporin produces long-term forebrain cholinergic deficits and reduces dendritic branching and spine density of neocortical pyramidal neurons. Cereb Cortex. 1998 Mar;8(2):142–155. doi: 10.1093/cercor/8.2.142. [DOI] [PubMed] [Google Scholar]
- Role L. W., Berg D. K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron. 1996 Jun;16(6):1077–1085. doi: 10.1016/s0896-6273(00)80134-8. [DOI] [PubMed] [Google Scholar]
- Rozovsky I., Finch C. E., Morgan T. E. Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging. 1998 Jan-Feb;19(1):97–103. doi: 10.1016/s0197-4580(97)00169-3. [DOI] [PubMed] [Google Scholar]
- Sapolsky R. M. Why stress is bad for your brain. Science. 1996 Aug 9;273(5276):749–750. doi: 10.1126/science.273.5276.749. [DOI] [PubMed] [Google Scholar]
- Selkoe D. J. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annu Rev Cell Biol. 1994;10:373–403. doi: 10.1146/annurev.cb.10.110194.002105. [DOI] [PubMed] [Google Scholar]
- Semba J., Miyoshi R., Kito S. Nicotine protects against the dexamethasone potentiation of kainic acid-induced neurotoxicity in cultured hippocampal neurons. Brain Res. 1996 Oct 7;735(2):335–338. doi: 10.1016/0006-8993(96)00926-2. [DOI] [PubMed] [Google Scholar]
- Shimada A., Hosokawa M., Ohta A., Akiguchi I., Takeda T. Localization of atrophy-prone areas in the aging mouse brain: comparison between the brain atrophy model SAM-P/10 and the normal control SAM-R/1. Neuroscience. 1994 Apr;59(4):859–869. doi: 10.1016/0306-4522(94)90290-9. [DOI] [PubMed] [Google Scholar]
- Shimohama S., Akaike A., Kimura J. Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann N Y Acad Sci. 1996 Jan 17;777:356–361. doi: 10.1111/j.1749-6632.1996.tb34445.x. [DOI] [PubMed] [Google Scholar]
- Sjak-Shie N. N., Meyer E. M. Effects of chronic nicotine and pilocarpine administration on neocortical neuronal density and [3H]GABA uptake in nucleus basalis lesioned rats. Brain Res. 1993 Oct 8;624(1-2):295–298. doi: 10.1016/0006-8993(93)90091-z. [DOI] [PubMed] [Google Scholar]
- Socci D. J., Arendash G. W. Chronic nicotine treatment prevents neuronal loss in neocortex resulting from nucleus basalis lesions in young adult and aged rats. Mol Chem Neuropathol. 1996 Apr;27(3):285–305. doi: 10.1007/BF02815110. [DOI] [PubMed] [Google Scholar]
- Socci D. J., Sanberg P. R., Arendash G. W. Nicotine enhances Morris water maze performance of young and aged rats. Neurobiol Aging. 1995 Sep-Oct;16(5):857–860. doi: 10.1016/0197-4580(95)00091-r. [DOI] [PubMed] [Google Scholar]
- Strittmatter W. J., Roses A. D. Apolipoprotein E and Alzheimer's disease. Annu Rev Neurosci. 1996;19:53–77. doi: 10.1146/annurev.ne.19.030196.000413. [DOI] [PubMed] [Google Scholar]
- Summers K. L., Giacobini E. Effects of local and repeated systemic administration of (-)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res. 1995 Jun;20(6):753–759. doi: 10.1007/BF01705545. [DOI] [PubMed] [Google Scholar]
- Whitehouse P. J., Martino A. M., Wagster M. V., Price D. L., Mayeux R., Atack J. R., Kellar K. J. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease: an autoradiographic study. Neurology. 1988 May;38(5):720–723. doi: 10.1212/wnl.38.5.720. [DOI] [PubMed] [Google Scholar]
- Wilson A. L., Langley L. K., Monley J., Bauer T., Rottunda S., McFalls E., Kovera C., McCarten J. R. Nicotine patches in Alzheimer's disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav. 1995 Jun-Jul;51(2-3):509–514. doi: 10.1016/0091-3057(95)00043-v. [DOI] [PubMed] [Google Scholar]
- Zoli M., Grimaldi R., Ferrari R., Zini I., Agnati L. F. Short- and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats. Stroke. 1997 May;28(5):1049–1059. doi: 10.1161/01.str.28.5.1049. [DOI] [PubMed] [Google Scholar]
- Zoli M., Guidolin D., Agnati L. F. Morphometric evaluation of populations of neuronal profiles (cell bodies, dendrites, and nerve terminals) in the central nervous system. Microsc Res Tech. 1992 Jun 1;21(4):315–337. doi: 10.1002/jemt.1070210408. [DOI] [PubMed] [Google Scholar]
- Zoli M., Léna C., Picciotto M. R., Changeux J. P. Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J Neurosci. 1998 Jun 15;18(12):4461–4472. doi: 10.1523/JNEUROSCI.18-12-04461.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]