Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 1;18(5):1415–1424. doi: 10.1093/emboj/18.5.1415

P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities.

J Y Bouet 1, B E Funnell 1
PMCID: PMC1171231  PMID: 10064607

Abstract

The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.

Full Text

The Full Text of this article is available as a PDF (521.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles A. L., Friedman S. A., Austin S. J. Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organization of the P1 partition region. J Mol Biol. 1985 Sep 20;185(2):261–272. doi: 10.1016/0022-2836(85)90402-4. [DOI] [PubMed] [Google Scholar]
  2. Crooke E., Castuma C. E., Kornberg A. The chromosome origin of Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J Biol Chem. 1992 Aug 25;267(24):16779–16782. [PubMed] [Google Scholar]
  3. Davey M. J., Funnell B. E. Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem. 1997 Jun 13;272(24):15286–15292. doi: 10.1074/jbc.272.24.15286. [DOI] [PubMed] [Google Scholar]
  4. Davey M. J., Funnell B. E. The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem. 1994 Nov 25;269(47):29908–29913. [PubMed] [Google Scholar]
  5. Davis M. A., Austin S. J. Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. EMBO J. 1988 Jun;7(6):1881–1888. doi: 10.1002/j.1460-2075.1988.tb03021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis M. A., Martin K. A., Austin S. J. Biochemical activities of the parA partition protein of the P1 plasmid. Mol Microbiol. 1992 May;6(9):1141–1147. doi: 10.1111/j.1365-2958.1992.tb01552.x. [DOI] [PubMed] [Google Scholar]
  7. Davis M. A., Martin K. A., Austin S. J. Specificity switching of the P1 plasmid centromere-like site. EMBO J. 1990 Apr;9(4):991–998. doi: 10.1002/j.1460-2075.1990.tb08201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis M. A., Radnedge L., Martin K. A., Hayes F., Youngren B., Austin S. J. The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol Microbiol. 1996 Sep;21(5):1029–1036. doi: 10.1046/j.1365-2958.1996.721423.x. [DOI] [PubMed] [Google Scholar]
  9. FRANZEN J. S., BINKLEY S. B. Comparison of the acid-soluble nucleotides in Escherichia coli at different growth rates. J Biol Chem. 1961 Feb;236:515–519. [PubMed] [Google Scholar]
  10. Friedman S. A., Austin S. J. The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid. 1988 Mar;19(2):103–112. doi: 10.1016/0147-619x(88)90049-2. [DOI] [PubMed] [Google Scholar]
  11. Funnell B. E., Gagnier L. P1 plasmid partition: binding of P1 ParB protein and Escherichia coli integration host factor to altered parS sites. Biochimie. 1994;76(10-11):924–932. doi: 10.1016/0300-9084(94)90017-5. [DOI] [PubMed] [Google Scholar]
  12. Funnell B. E., Gagnier L. Partition of P1 plasmids in Escherichia coli mukB chromosomal partition mutants. J Bacteriol. 1995 May;177(9):2381–2386. doi: 10.1128/jb.177.9.2381-2386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Funnell B. E., Gagnier L. The P1 plasmid partition complex at parS. II. Analysis of ParB protein binding activity and specificity. J Biol Chem. 1993 Feb 15;268(5):3616–3624. [PubMed] [Google Scholar]
  14. Funnell B. E. Mini-P1 plasmid partitioning: excess ParB protein destabilizes plasmids containing the centromere parS. J Bacteriol. 1988 Feb;170(2):954–960. doi: 10.1128/jb.170.2.954-960.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Funnell B. E. Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6657–6661. doi: 10.1073/pnas.85.18.6657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Funnell B. E. The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J Biol Chem. 1991 Aug 5;266(22):14328–14337. [PubMed] [Google Scholar]
  17. Gordon G. S., Sitnikov D., Webb C. D., Teleman A., Straight A., Losick R., Murray A. W., Wright A. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell. 1997 Sep 19;90(6):1113–1121. doi: 10.1016/s0092-8674(00)80377-3. [DOI] [PubMed] [Google Scholar]
  18. Gradia S., Acharya S., Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell. 1997 Dec 26;91(7):995–1005. doi: 10.1016/s0092-8674(00)80490-0. [DOI] [PubMed] [Google Scholar]
  19. Hayes F., Radnedge L., Davis M. A., Austin S. J. The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol Microbiol. 1994 Jan;11(2):249–260. doi: 10.1111/j.1365-2958.1994.tb00305.x. [DOI] [PubMed] [Google Scholar]
  20. Hiraga S. Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem. 1992;61:283–306. doi: 10.1146/annurev.bi.61.070192.001435. [DOI] [PubMed] [Google Scholar]
  21. Ireton K., Gunther N. W., 4th, Grossman A. D. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol. 1994 Sep;176(17):5320–5329. doi: 10.1128/jb.176.17.5320-5329.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jensen R. B., Gerdes K. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol. 1997 Jun 20;269(4):505–513. doi: 10.1006/jmbi.1997.1061. [DOI] [PubMed] [Google Scholar]
  23. Jensen R. B., Lurz R., Gerdes K. Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8550–8555. doi: 10.1073/pnas.95.15.8550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klemm R. D., Austin R. J., Bell S. P. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 1997 Feb 21;88(4):493–502. doi: 10.1016/s0092-8674(00)81889-9. [DOI] [PubMed] [Google Scholar]
  25. Koonin E. V. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol. 1993 Feb 20;229(4):1165–1174. doi: 10.1006/jmbi.1993.1115. [DOI] [PubMed] [Google Scholar]
  26. Lin D. C., Grossman A. D. Identification and characterization of a bacterial chromosome partitioning site. Cell. 1998 Mar 6;92(5):675–685. doi: 10.1016/s0092-8674(00)81135-6. [DOI] [PubMed] [Google Scholar]
  27. Lin Z., Mallavia L. P. Membrane association of active plasmid partitioning protein A in Escherichia coli. J Biol Chem. 1998 May 1;273(18):11302–11312. doi: 10.1074/jbc.273.18.11302. [DOI] [PubMed] [Google Scholar]
  28. Mohl D. A., Gober J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell. 1997 Mar 7;88(5):675–684. doi: 10.1016/s0092-8674(00)81910-8. [DOI] [PubMed] [Google Scholar]
  29. Mori H., Mori Y., Ichinose C., Niki H., Ogura T., Kato A., Hiraga S. Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J Biol Chem. 1989 Sep 15;264(26):15535–15541. [PubMed] [Google Scholar]
  30. Motallebi-Veshareh M., Rouch D. A., Thomas C. M. A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol. 1990 Sep;4(9):1455–1463. doi: 10.1111/j.1365-2958.1990.tb02056.x. [DOI] [PubMed] [Google Scholar]
  31. Nash H. A., Robertson C. A., Flamm E., Weisberg R. A., Miller H. I. Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits. J Bacteriol. 1987 Sep;169(9):4124–4127. doi: 10.1128/jb.169.9.4124-4127.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Niki H., Hiraga S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 1998 Apr 1;12(7):1036–1045. doi: 10.1101/gad.12.7.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Niki H., Hiraga S. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell. 1997 Sep 5;90(5):951–957. doi: 10.1016/s0092-8674(00)80359-1. [DOI] [PubMed] [Google Scholar]
  34. Ogura T., Hiraga S. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell. 1983 Feb;32(2):351–360. doi: 10.1016/0092-8674(83)90454-3. [DOI] [PubMed] [Google Scholar]
  35. Raskin D. M., de Boer P. A. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell. 1997 Nov 28;91(5):685–694. doi: 10.1016/s0092-8674(00)80455-9. [DOI] [PubMed] [Google Scholar]
  36. Rice P. A., Yang S., Mizuuchi K., Nash H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. 1996 Dec 27;87(7):1295–1306. doi: 10.1016/s0092-8674(00)81824-3. [DOI] [PubMed] [Google Scholar]
  37. Sekimizu K., Bramhill D., Kornberg A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell. 1987 Jul 17;50(2):259–265. doi: 10.1016/0092-8674(87)90221-2. [DOI] [PubMed] [Google Scholar]
  38. Sigman D. S., Kuwabara M. D., Chen C. H., Bruice T. W. Nuclease activity of 1,10-phenanthroline-copper in study of protein-DNA interactions. Methods Enzymol. 1991;208:414–433. doi: 10.1016/0076-6879(91)08022-a. [DOI] [PubMed] [Google Scholar]
  39. Spassky A., Rimsky S., Buc H., Busby S. Correlation between the conformation of Escherichia coli -10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 1988 Jun;7(6):1871–1879. doi: 10.1002/j.1460-2075.1988.tb03020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sprang S. R. G protein mechanisms: insights from structural analysis. Annu Rev Biochem. 1997;66:639–678. doi: 10.1146/annurev.biochem.66.1.639. [DOI] [PubMed] [Google Scholar]
  41. Watanabe E., Inamoto S., Lee M. H., Kim S. U., Ogua T., Mori H., Hiraga S., Yamasaki M., Nagai K. Purification and characterization of the sopB gene product which is responsible for stable maintenance of mini-F plasmid. Mol Gen Genet. 1989 Sep;218(3):431–436. doi: 10.1007/BF00332406. [DOI] [PubMed] [Google Scholar]
  42. Webb C. D., Teleman A., Gordon S., Straight A., Belmont A., Lin D. C., Grossman A. D., Wright A., Losick R. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell. 1997 Mar 7;88(5):667–674. doi: 10.1016/s0092-8674(00)81909-1. [DOI] [PubMed] [Google Scholar]
  43. Williams D. R., Thomas C. M. Active partitioning of bacterial plasmids. J Gen Microbiol. 1992 Jan;138(1):1–16. doi: 10.1099/00221287-138-1-1. [DOI] [PubMed] [Google Scholar]
  44. Yamauchi M., Baker T. A. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway. EMBO J. 1998 Sep 15;17(18):5509–5518. doi: 10.1093/emboj/17.18.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Youngren B., Austin S. Altered ParA partition proteins of plasmid P1 act via the partition site to block plasmid propagation. Mol Microbiol. 1997 Sep;25(6):1023–1030. doi: 10.1046/j.1365-2958.1997.4761842.x. [DOI] [PubMed] [Google Scholar]
  46. de Boer P. A., Crossley R. E., Hand A. R., Rothfield L. I. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 1991 Dec;10(13):4371–4380. doi: 10.1002/j.1460-2075.1991.tb05015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES