Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 15;18(6):1447–1458. doi: 10.1093/emboj/18.6.1447

X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture.

H Raaijmakers 1, O Vix 1, I Törõ 1, S Golz 1, B Kemper 1, D Suck 1
PMCID: PMC1171234  PMID: 10075917

Abstract

Phage T4 endonuclease VII (Endo VII), the first enzyme shown to resolve Holliday junctions, recognizes a broad spectrum of DNA substrates ranging from branched DNAs to single base mismatches. We have determined the crystal structures of the Ca2+-bound wild-type and the inactive N62D mutant enzymes at 2.4 and 2.1 A, respectively. The Endo VII monomers form an elongated, highly intertwined molecular dimer exhibiting extreme domain swapping. The major dimerization elements are two pairs of antiparallel helices forming a novel 'four-helix cross' motif. The unique monomer fold, almost completely lacking beta-sheet structure and containing a zinc ion tetrahedrally coordinated to four cysteines, does not resemble any of the known junction-resolving enzymes, including the Escherichia coli RuvC and lambda integrase-type recombinases. The S-shaped dimer has two 'binding bays' separated by approximately 25 A which are lined by positively charged residues and contain near their base residues known to be essential for activity. These include Asp40 and Asn62, which function as ligands for the bound calcium ions. A pronounced bipolar charge distribution suggests that branched DNA substrates bind to the positively charged face with the scissile phosphates located near the divalent cations. A model for the complex with a four-way DNA junction is presented.

Full Text

The Full Text of this article is available as a PDF (793.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariyoshi M., Vassylyev D. G., Iwasaki H., Nakamura H., Shinagawa H., Morikawa K. Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. coli. Cell. 1994 Sep 23;78(6):1063–1072. doi: 10.1016/0092-8674(94)90280-1. [DOI] [PubMed] [Google Scholar]
  2. Bennett R. J., West S. C. RuvC protein resolves Holliday junctions via cleavage of the continuous (noncrossover) strands. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5635–5639. doi: 10.1073/pnas.92.12.5635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett R. J., West S. C. Structural analysis of the RuvC-Holliday junction complex reveals an unfolded junction. J Mol Biol. 1995 Sep 15;252(2):213–226. doi: 10.1006/jmbi.1995.0489. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharyya A., Murchie A. I., von Kitzing E., Diekmann S., Kemper B., Lilley D. M. Model for the interaction of DNA junctions and resolving enzymes. J Mol Biol. 1991 Oct 20;221(4):1191–1207. doi: 10.1016/0022-2836(91)90928-y. [DOI] [PubMed] [Google Scholar]
  5. Birkenbihl R. P., Kemper B. Endonuclease VII has two DNA-binding sites each composed from one N- and one C-terminus provided by different subunits of the protein dimer. EMBO J. 1998 Aug 3;17(15):4527–4534. doi: 10.1093/emboj/17.15.4527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Birkenbihl R. P., Kemper B. Localization and characterization of the dimerization domain of holliday structure resolving endonuclease VII of phage T4. J Mol Biol. 1998 Jul 3;280(1):73–83. doi: 10.1006/jmbi.1998.1851. [DOI] [PubMed] [Google Scholar]
  7. Giraud-Panis M. J., Duckett D. R., Lilley D. M. The modular character of a DNA junction-resolving enzyme: a zinc-binding motif in bacteriophage T4 endonuclease VII. J Mol Biol. 1995 Oct 6;252(5):596–610. doi: 10.1006/jmbi.1995.0523. [DOI] [PubMed] [Google Scholar]
  8. Giraud-Panis M. J., Lilley D. M. Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. EMBO J. 1997 May 1;16(9):2528–2534. doi: 10.1093/emboj/16.9.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giraud-Panis M. J., Lilley D. M. T4 endonuclease VII. Importance of a histidine-aspartate cluster within the zinc-binding domain. J Biol Chem. 1996 Dec 20;271(51):33148–33155. doi: 10.1074/jbc.271.51.33148. [DOI] [PubMed] [Google Scholar]
  10. Golz S., Birkenbihl R. P., Kemper B. Improved large-scale preparation of phage T4 endonuclease VII overexpressed in E. coli. DNA Res. 1995 Dec 31;2(6):277–284. doi: 10.1093/dnares/2.6.277. [DOI] [PubMed] [Google Scholar]
  11. Golz S., Christoph A., Birkenkamp-Demtröder K., Kemper B. Identification of amino acids of endonuclease VII essential for binding and cleavage of cruciform DNA. Eur J Biochem. 1997 May 1;245(3):573–580. doi: 10.1111/j.1432-1033.1997.00573.x. [DOI] [PubMed] [Google Scholar]
  12. Gopaul D. N., Guo F., Van Duyne G. D. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 1998 Jul 15;17(14):4175–4187. doi: 10.1093/emboj/17.14.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greger B., Kemper B. An apyrimidinic site kinks DNA and triggers incision by endonuclease VII of phage T4. Nucleic Acids Res. 1998 Oct 1;26(19):4432–4438. doi: 10.1093/nar/26.19.4432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guo F., Gopaul D. N., van Duyne G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. 1997 Sep 4;389(6646):40–46. doi: 10.1038/37925. [DOI] [PubMed] [Google Scholar]
  15. Hickman A. B., Waninger S., Scocca J. J., Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell. 1997 Apr 18;89(2):227–237. doi: 10.1016/s0092-8674(00)80202-0. [DOI] [PubMed] [Google Scholar]
  16. Iwasaki H., Takahagi M., Shiba T., Nakata A., Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 1991 Dec;10(13):4381–4389. doi: 10.1002/j.1460-2075.1991.tb05016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  18. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Ikehara M., Matsuzaki T., Morikawa K. Three-dimensional structure of ribonuclease H from E. coli. Nature. 1990 Sep 20;347(6290):306–309. doi: 10.1038/347306a0. [DOI] [PubMed] [Google Scholar]
  19. Kemper B., Brown D. T. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J Virol. 1976 Jun;18(3):1000–1015. doi: 10.1128/jvi.18.3.1000-1015.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kosak H. G., Kemper B. W. Large-scale preparation of T4 endonuclease VII from over-expressing bacteria. Eur J Biochem. 1990 Dec 27;194(3):779–784. doi: 10.1111/j.1432-1033.1990.tb19469.x. [DOI] [PubMed] [Google Scholar]
  21. Kupfer C., Lee S., Kemper B. Binding of endonuclease VII to cruciform DNA. Visualization in the electron microscope. J Biol Chem. 1998 Nov 27;273(48):31637–31639. doi: 10.1074/jbc.273.48.31637. [DOI] [PubMed] [Google Scholar]
  22. Kwon H. J., Tirumalai R., Landy A., Ellenberger T. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science. 1997 Apr 4;276(5309):126–131. doi: 10.1126/science.276.5309.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  24. Lapatto R., Krengel U., Schreuder H. A., Arkema A., de Boer B., Kalk K. H., Hol W. G., Grootenhuis P. D., Mulders J. W., Dijkema R. X-ray structure of antistasin at 1.9 A resolution and its modelled complex with blood coagulation factor Xa. EMBO J. 1997 Sep 1;16(17):5151–5161. doi: 10.1093/emboj/16.17.5151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
  26. Mueller J. E., Newton C. J., Jensch F., Kemper B., Cunningham R. P., Kallenbach N. R., Seeman N. C. Resolution of Holliday junction analogs by T4 endonuclease VII can be directed by substrate structure. J Biol Chem. 1990 Aug 15;265(23):13918–13924. [PubMed] [Google Scholar]
  27. Murchie A. I., Lilley D. M. T4 endonuclease VII cleaves DNA containing a cisplatin adduct. J Mol Biol. 1993 Sep 5;233(1):77–85. doi: 10.1006/jmbi.1993.1486. [DOI] [PubMed] [Google Scholar]
  28. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  29. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  30. Parsons C. A., Kemper B., West S. C. Interaction of a four-way junction in DNA with T4 endonuclease VII. J Biol Chem. 1990 Jun 5;265(16):9285–9289. [PubMed] [Google Scholar]
  31. Pottmeyer S., Kemper B. T4 endonuclease VII resolves cruciform DNA with nick and counter-nick and its activity is directed by local nucleotide sequence. J Mol Biol. 1992 Feb 5;223(3):607–615. doi: 10.1016/0022-2836(92)90977-r. [DOI] [PubMed] [Google Scholar]
  32. Pöhler J. R., Giraud-Panis M. J., Lilley D. M. T4 endonuclease VII selects and alters the structure of the four-way DNA junction; binding of a resolution-defective mutant enzyme. J Mol Biol. 1996 Aug 2;260(5):678–696. doi: 10.1006/jmbi.1996.0430. [DOI] [PubMed] [Google Scholar]
  33. Roe S. M., Barlow T., Brown T., Oram M., Keeley A., Tsaneva I. R., Pearl L. H. Crystal structure of an octameric RuvA-Holliday junction complex. Mol Cell. 1998 Sep;2(3):361–372. doi: 10.1016/s1097-2765(00)80280-4. [DOI] [PubMed] [Google Scholar]
  34. Schofield M. J., Lilley D. M., White M. F. Dissection of the sequence specificity of the Holliday junction endonuclease CCE1. Biochemistry. 1998 May 26;37(21):7733–7740. doi: 10.1021/bi980399s. [DOI] [PubMed] [Google Scholar]
  35. Solaro P. C., Birkenkamp K., Pfeiffer P., Kemper B. Endonuclease VII of phage T4 triggers mismatch correction in vitro. J Mol Biol. 1993 Apr 5;230(3):868–877. doi: 10.1006/jmbi.1993.1207. [DOI] [PubMed] [Google Scholar]
  36. Suck D. DNA recognition by DNase I. J Mol Recognit. 1994 Jun;7(2):65–70. doi: 10.1002/jmr.300070203. [DOI] [PubMed] [Google Scholar]
  37. Suck D. DNA recognition by structure-selective nucleases. Biopolymers. 1997;44(4):405–421. doi: 10.1002/(SICI)1097-0282(1997)44:4<405::AID-BIP5>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  38. Vassylyev D. G., Kashiwagi T., Mikami Y., Ariyoshi M., Iwai S., Ohtsuka E., Morikawa K. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995 Dec 1;83(5):773–782. doi: 10.1016/0092-8674(95)90190-6. [DOI] [PubMed] [Google Scholar]
  39. White M. F., Giraud-Panis M. J., Pöhler J. R., Lilley D. M. Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J Mol Biol. 1997 Jun 27;269(5):647–664. doi: 10.1006/jmbi.1997.1097. [DOI] [PubMed] [Google Scholar]
  40. White M. F., Lilley D. M. The resolving enzyme CCE1 of yeast opens the structure of the four-way DNA junction. J Mol Biol. 1997 Feb 14;266(1):122–134. doi: 10.1006/jmbi.1996.0795. [DOI] [PubMed] [Google Scholar]
  41. Youil R., Kemper B. W., Cotton R. G. Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):87–91. doi: 10.1073/pnas.92.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang G., Darst S. A. Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain. Science. 1998 Jul 10;281(5374):262–266. doi: 10.1126/science.281.5374.262. [DOI] [PubMed] [Google Scholar]
  43. von Kitzing E., Lilley D. M., Diekmann S. The stereochemistry of a four-way DNA junction: a theoretical study. Nucleic Acids Res. 1990 May 11;18(9):2671–2683. doi: 10.1093/nar/18.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES