Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 15;18(6):1621–1629. doi: 10.1093/emboj/18.6.1621

A trans-acting peptide activates the yeast a1 repressor by raising its DNA-binding affinity.

M R Stark 1, D Escher 1, A D Johnson 1
PMCID: PMC1171249  PMID: 10075932

Abstract

The cooperative binding of gene regulatory proteins to DNA is a common feature of transcriptional control in both prokaryotes and eukaryotes. It is generally viewed as a simple energy coupling, through protein-protein interactions, of two or more DNA-binding proteins. In this paper, we show that the simple view does not account for the cooperative DNA binding of a1 and alpha2, two homeodomain proteins from budding yeast. Rather, we show through the use of chimeric proteins and synthetic peptides that, upon heterodimerization, alpha2 instructs a1 to bind DNA. This change is induced by contact with a peptide contributed by alpha2, and this contact converts a1 from a weak to a strong DNA-binding protein. This explains, in part, how high DNA-binding specificity is achieved only when the two gene regulatory proteins conjoin. We also provide evidence that features of the a1-alpha2 interaction can serve as a model for other examples of protein-protein interactions, including that between the herpes virus transcriptional activator VP16 and the mammalian homeodomain-containing protein Oct-l.

Full Text

The Full Text of this article is available as a PDF (371.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews B. J., Donoviel M. S. A heterodimeric transcriptional repressor becomes crystal clear. Science. 1995 Oct 13;270(5234):251–253. doi: 10.1126/science.270.5234.251. [DOI] [PubMed] [Google Scholar]
  2. Baxter S. M., Gontrum D. M., Phillips C. L., Roth A. F., Dahlquist F. W. Heterodimerization of the yeast homeodomain transcriptional regulators alpha 2 and a1: secondary structure determination of the a1 homeodomain and changes produced by alpha 2 interactions. Biochemistry. 1994 Dec 27;33(51):15309–15320. doi: 10.1021/bi00255a012. [DOI] [PubMed] [Google Scholar]
  3. Chan S. K., Pöpperl H., Krumlauf R., Mann R. S. An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J. 1996 May 15;15(10):2476–2487. [PMC free article] [PubMed] [Google Scholar]
  4. Dranginis A. M. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature. 1990 Oct 18;347(6294):682–685. doi: 10.1038/347682a0. [DOI] [PubMed] [Google Scholar]
  5. Ebright R. H. Transcription activation at Class I CAP-dependent promoters. Mol Microbiol. 1993 May;8(5):797–802. doi: 10.1111/j.1365-2958.1993.tb01626.x. [DOI] [PubMed] [Google Scholar]
  6. Goutte C., Johnson A. D. Recognition of a DNA operator by a dimer composed of two different homeodomain proteins. EMBO J. 1994 Mar 15;13(6):1434–1442. doi: 10.1002/j.1460-2075.1994.tb06397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goutte C., Johnson A. D. Yeast a1 and alpha 2 homeodomain proteins form a DNA-binding activity with properties distinct from those of either protein. J Mol Biol. 1993 Oct 5;233(3):359–371. doi: 10.1006/jmbi.1993.1517. [DOI] [PubMed] [Google Scholar]
  8. Goutte C., Johnson A. D. a1 protein alters the DNA binding specificity of alpha 2 repressor. Cell. 1988 Mar 25;52(6):875–882. doi: 10.1016/0092-8674(88)90429-1. [DOI] [PubMed] [Google Scholar]
  9. Haigh A., Greaves R., O'Hare P. Interference with the assembly of a virus-host transcription complex by peptide competition. Nature. 1990 Mar 15;344(6263):257–259. doi: 10.1038/344257a0. [DOI] [PubMed] [Google Scholar]
  10. Hayes S., O'Hare P. Mapping of a major surface-exposed site in herpes simplex virus protein Vmw65 to a region of direct interaction in a transcription complex assembly. J Virol. 1993 Feb;67(2):852–862. doi: 10.1128/jvi.67.2.852-862.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ho C. Y., Adamson J. G., Hodges R. S., Smith M. Heterodimerization of the yeast MATa1 and MAT alpha 2 proteins is mediated by two leucine zipper-like coiled-coil motifs. EMBO J. 1994 Mar 15;13(6):1403–1413. doi: 10.1002/j.1460-2075.1994.tb06394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson A. D. Molecular mechanisms of cell-type determination in budding yeast. Curr Opin Genet Dev. 1995 Oct;5(5):552–558. doi: 10.1016/0959-437x(95)80022-0. [DOI] [PubMed] [Google Scholar]
  13. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992 Feb 21;68(4):709–719. doi: 10.1016/0092-8674(92)90146-4. [DOI] [PubMed] [Google Scholar]
  14. Knoepfler P. S., Kamps M. P. The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol Cell Biol. 1995 Oct;15(10):5811–5819. doi: 10.1128/mcb.15.10.5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Komachi K., Redd M. J., Johnson A. D. The WD repeats of Tup1 interact with the homeo domain protein alpha 2. Genes Dev. 1994 Dec 1;8(23):2857–2867. doi: 10.1101/gad.8.23.2857. [DOI] [PubMed] [Google Scholar]
  16. Lai J. S., Cleary M. A., Herr W. A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain. Genes Dev. 1992 Nov;6(11):2058–2065. doi: 10.1101/gad.6.11.2058. [DOI] [PubMed] [Google Scholar]
  17. Lai J. S., Herr W. Interdigitated residues within a small region of VP16 interact with Oct-1, HCF, and DNA. Mol Cell Biol. 1997 Jul;17(7):3937–3946. doi: 10.1128/mcb.17.7.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li T., Stark M. R., Johnson A. D., Wolberger C. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science. 1995 Oct 13;270(5234):262–269. doi: 10.1126/science.270.5234.262. [DOI] [PubMed] [Google Scholar]
  19. Mak A., Johnson A. D. The carboxy-terminal tail of the homeo domain protein alpha 2 is required for function with a second homeo domain protein. Genes Dev. 1993 Oct;7(10):1862–1870. doi: 10.1101/gad.7.10.1862. [DOI] [PubMed] [Google Scholar]
  20. Mukai Y., Harashima S., Oshima Y. AAR1/TUP1 protein, with a structure similar to that of the beta subunit of G proteins, is required for a1-alpha 2 and alpha 2 repression in cell type control of Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jul;11(7):3773–3779. doi: 10.1128/mcb.11.7.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peltenburg L. T., Murre C. Engrailed and Hox homeodomain proteins contain a related Pbx interaction motif that recognizes a common structure present in Pbx. EMBO J. 1996 Jul 1;15(13):3385–3393. [PMC free article] [PubMed] [Google Scholar]
  22. Phillips C. L., Stark M. R., Johnson A. D., Dahlquist F. W. Heterodimerization of the yeast homeodomain transcriptional regulators alpha 2 and a1 induces an interfacial helix in alpha 2. Biochemistry. 1994 Aug 9;33(31):9294–9302. doi: 10.1021/bi00197a033. [DOI] [PubMed] [Google Scholar]
  23. Phillips C. L., Vershon A. K., Johnson A. D., Dahlquist F. W. Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy. Genes Dev. 1991 May;5(5):764–772. doi: 10.1101/gad.5.5.764. [DOI] [PubMed] [Google Scholar]
  24. Pomerantz J. L., Kristie T. M., Sharp P. A. Recognition of the surface of a homeo domain protein. Genes Dev. 1992 Nov;6(11):2047–2057. doi: 10.1101/gad.6.11.2047. [DOI] [PubMed] [Google Scholar]
  25. Qian Y. Q., Billeter M., Otting G., Müller M., Gehring W. J., Wüthrich K. The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell. 1989 Nov 3;59(3):573–580. doi: 10.1016/0092-8674(89)90040-8. [DOI] [PubMed] [Google Scholar]
  26. Reznikoff W. S. Catabolite gene activator protein activation of lac transcription. J Bacteriol. 1992 Feb;174(3):655–658. doi: 10.1128/jb.174.3.655-658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  28. Shaw P., Knez J., Capone J. P. Amino acid substitutions in the herpes simplex virus transactivator VP16 uncouple direct protein-protein interaction and DNA binding from complex assembly and transactivation. J Biol Chem. 1995 Dec 1;270(48):29030–29037. doi: 10.1074/jbc.270.48.29030. [DOI] [PubMed] [Google Scholar]
  29. Smith D. L., Johnson A. D. A molecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homeodomains of an alpha 2 dimer. Cell. 1992 Jan 10;68(1):133–142. doi: 10.1016/0092-8674(92)90212-u. [DOI] [PubMed] [Google Scholar]
  30. Somerville R. The Trp repressor, a ligand-activated regulatory protein. Prog Nucleic Acid Res Mol Biol. 1992;42:1–38. doi: 10.1016/s0079-6603(08)60572-3. [DOI] [PubMed] [Google Scholar]
  31. Stark M. R., Johnson A. D. Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature. 1994 Sep 29;371(6496):429–432. doi: 10.1038/371429a0. [DOI] [PubMed] [Google Scholar]
  32. Stern S., Herr W. The herpes simplex virus trans-activator VP16 recognizes the Oct-1 homeo domain: evidence for a homeo domain recognition subdomain. Genes Dev. 1991 Dec;5(12B):2555–2566. doi: 10.1101/gad.5.12b.2555. [DOI] [PubMed] [Google Scholar]
  33. Strathern J., Shafer B., Hicks J., McGill C. a/Alpha-specific repression by MAT alpha 2. Genetics. 1988 Sep;120(1):75–81. doi: 10.1093/genetics/120.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  35. Sánchez M., Jennings P. A., Murre C. Conformational changes induced in Hoxb-8/Pbx-1 heterodimers in solution and upon interaction with specific DNA. Mol Cell Biol. 1997 Sep;17(9):5369–5376. doi: 10.1128/mcb.17.9.5369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vershon A. K., Jin Y., Johnson A. D. A homeo domain protein lacking specific side chains of helix 3 can still bind DNA and direct transcriptional repression. Genes Dev. 1995 Jan 15;9(2):182–192. doi: 10.1101/gad.9.2.182. [DOI] [PubMed] [Google Scholar]
  37. Walker S., Hayes S., O'Hare P. Site-specific conformational alteration of the Oct-1 POU domain-DNA complex as the basis for differential recognition by Vmw65 (VP16). Cell. 1994 Dec 2;79(5):841–852. doi: 10.1016/0092-8674(94)90073-6. [DOI] [PubMed] [Google Scholar]
  38. Werstuck G., Capone J. P. Identification of a domain of the herpes simplex virus trans-activator Vmw65 required for protein-DNA complex formation through the use of protein A fusion proteins. J Virol. 1989 Dec;63(12):5509–5513. doi: 10.1128/jvi.63.12.5509-5513.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Werstuck G., Capone J. P. Mutational analysis of the herpes simplex virus trans-inducing factor Vmw65. Gene. 1989 Feb 20;75(2):213–224. doi: 10.1016/0378-1119(89)90267-9. [DOI] [PubMed] [Google Scholar]
  40. Wolberger C., Vershon A. K., Liu B., Johnson A. D., Pabo C. O. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell. 1991 Nov 1;67(3):517–528. doi: 10.1016/0092-8674(91)90526-5. [DOI] [PubMed] [Google Scholar]
  41. Wu T. J., Monokian G., Mark D. F., Wobbe C. R. Transcriptional activation by herpes simplex virus type 1 VP16 in vitro and its inhibition by oligopeptides. Mol Cell Biol. 1994 May;14(5):3484–3493. doi: 10.1128/mcb.14.5.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES