Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723

Molecular tinkering of G protein-coupled receptors: an evolutionary success.

J Bockaert 1, J P Pin 1
PMCID: PMC1171258  PMID: 10202136

Abstract

Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.

Full Text

The Full Text of this article is available as a PDF (220.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora K. K., Krsmanovic L. Z., Mores N., O'Farrell H., Catt K. J. Mediation of cyclic AMP signaling by the first intracellular loop of the gonadotropin-releasing hormone receptor. J Biol Chem. 1998 Oct 2;273(40):25581–25586. doi: 10.1074/jbc.273.40.25581. [DOI] [PubMed] [Google Scholar]
  2. Bai M., Trivedi S., Brown E. M. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem. 1998 Sep 4;273(36):23605–23610. doi: 10.1074/jbc.273.36.23605. [DOI] [PubMed] [Google Scholar]
  3. Baker E. K., Colley N. J., Zuker C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 1994 Oct 17;13(20):4886–4895. doi: 10.1002/j.1460-2075.1994.tb06816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bargmann C. I. Neurobiology of the Caenorhabditis elegans genome. Science. 1998 Dec 11;282(5396):2028–2033. doi: 10.1126/science.282.5396.2028. [DOI] [PubMed] [Google Scholar]
  6. Bargmann C. I. Olfactory receptors, vomeronasal receptors, and the organization of olfactory information. Cell. 1997 Aug 22;90(4):585–587. doi: 10.1016/s0092-8674(00)80518-8. [DOI] [PubMed] [Google Scholar]
  7. Bockaert J., Pin J. P. Utiliser un recepteur couplé aux protéines G pour communiquer. Un succès évolutif. C R Acad Sci III. 1998 Jul;321(7):529–551. doi: 10.1016/s0764-4469(98)80455-1. [DOI] [PubMed] [Google Scholar]
  8. Bourne H. R. How receptors talk to trimeric G proteins. Curr Opin Cell Biol. 1997 Apr;9(2):134–142. doi: 10.1016/s0955-0674(97)80054-3. [DOI] [PubMed] [Google Scholar]
  9. Brakeman P. R., Lanahan A. A., O'Brien R., Roche K., Barnes C. A., Huganir R. L., Worley P. F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997 Mar 20;386(6622):284–288. doi: 10.1038/386284a0. [DOI] [PubMed] [Google Scholar]
  10. Burns C. M., Chu H., Rueter S. M., Hutchinson L. K., Canton H., Sanders-Bush E., Emeson R. B. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997 May 15;387(6630):303–308. doi: 10.1038/387303a0. [DOI] [PubMed] [Google Scholar]
  11. Carman C. V., Som T., Kim C. M., Benovic J. L. Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem. 1998 Aug 7;273(32):20308–20316. doi: 10.1074/jbc.273.32.20308. [DOI] [PubMed] [Google Scholar]
  12. Chavis P., Fagni L., Lansman J. B., Bockaert J. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature. 1996 Aug 22;382(6593):719–722. doi: 10.1038/382719a0. [DOI] [PubMed] [Google Scholar]
  13. Daaka Y., Luttrell L. M., Lefkowitz R. J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997 Nov 6;390(6655):88–91. doi: 10.1038/36362. [DOI] [PubMed] [Google Scholar]
  14. Davletov B. A., Meunier F. A., Ashton A. C., Matsushita H., Hirst W. D., Lelianova V. G., Wilkin G. P., Dolly J. O., Ushkaryov Y. A. Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. EMBO J. 1998 Jul 15;17(14):3909–3920. doi: 10.1093/emboj/17.14.3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Devreotes P. N. G protein-linked signaling pathways control the developmental program of Dictyostelium. Neuron. 1994 Feb;12(2):235–241. doi: 10.1016/0896-6273(94)90267-4. [DOI] [PubMed] [Google Scholar]
  16. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
  17. Dulac C., Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 1995 Oct 20;83(2):195–206. doi: 10.1016/0092-8674(95)90161-2. [DOI] [PubMed] [Google Scholar]
  18. Dwyer N. D., Troemel E. R., Sengupta P., Bargmann C. I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell. 1998 May 1;93(3):455–466. doi: 10.1016/s0092-8674(00)81173-3. [DOI] [PubMed] [Google Scholar]
  19. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  20. Fernandez L. M., Puett D. Lys583 in the third extracellular loop of the lutropin/choriogonadotropin receptor is critical for signaling. J Biol Chem. 1996 Jan 12;271(2):925–930. doi: 10.1074/jbc.271.2.925. [DOI] [PubMed] [Google Scholar]
  21. Ferreira P. A., Nakayama T. A., Pak W. L., Travis G. H. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature. 1996 Oct 17;383(6601):637–640. doi: 10.1038/383637a0. [DOI] [PubMed] [Google Scholar]
  22. Hall R. A., Premont R. T., Chow C. W., Blitzer J. T., Pitcher J. A., Claing A., Stoffel R. H., Barak L. S., Shenolikar S., Weinman E. J. The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature. 1998 Apr 9;392(6676):626–630. doi: 10.1038/33458. [DOI] [PubMed] [Google Scholar]
  23. Hamm H. E. The many faces of G protein signaling. J Biol Chem. 1998 Jan 9;273(2):669–672. doi: 10.1074/jbc.273.2.669. [DOI] [PubMed] [Google Scholar]
  24. Hebert T. E., Moffett S., Morello J. P., Loisel T. P., Bichet D. G., Barret C., Bouvier M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. 1996 Jul 5;271(27):16384–16392. doi: 10.1074/jbc.271.27.16384. [DOI] [PubMed] [Google Scholar]
  25. Javitch J. A., Fu D., Liapakis G., Chen J. Constitutive activation of the beta2 adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem. 1997 Jul 25;272(30):18546–18549. doi: 10.1074/jbc.272.30.18546. [DOI] [PubMed] [Google Scholar]
  26. Ji I., Ji T. H. Differential roles of exoloop 1 of the human follicle-stimulating hormone receptor in hormone binding and receptor activation. J Biol Chem. 1995 Jul 7;270(27):15970–15973. doi: 10.1074/jbc.270.27.15970. [DOI] [PubMed] [Google Scholar]
  27. Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., Yao W. J., Johnson M., Gunwaldsen C., Huang L. Y. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998 Dec 17;396(6712):674–679. doi: 10.1038/25348. [DOI] [PubMed] [Google Scholar]
  28. Journot L., Spengler D., Pantaloni C., Dumuis A., Sebben M., Bockaert J. The PACAP receptor: generation by alternative splicing of functional diversity among G protein-coupled receptors in nerve cells. Semin Cell Biol. 1994 Aug;5(4):263–272. doi: 10.1006/scel.1994.1032. [DOI] [PubMed] [Google Scholar]
  29. Kaupmann K., Huggel K., Heid J., Flor P. J., Bischoff S., Mickel S. J., McMaster G., Angst C., Bittiger H., Froestl W. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature. 1997 Mar 20;386(6622):239–246. doi: 10.1038/386239a0. [DOI] [PubMed] [Google Scholar]
  30. Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., Mosbacher J., Bischoff S., Kulik A., Shigemoto R. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998 Dec 17;396(6712):683–687. doi: 10.1038/25360. [DOI] [PubMed] [Google Scholar]
  31. Kornau H. C., Seeburg P. H., Kennedy M. B. Interaction of ion channels and receptors with PDZ domain proteins. Curr Opin Neurobiol. 1997 Jun;7(3):368–373. doi: 10.1016/s0959-4388(97)80064-5. [DOI] [PubMed] [Google Scholar]
  32. Krasnoperov V. G., Bittner M. A., Beavis R., Kuang Y., Salnikow K. V., Chepurny O. G., Little A. R., Plotnikov A. N., Wu D., Holz R. W. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. 1997 Jun;18(6):925–937. doi: 10.1016/s0896-6273(00)80332-3. [DOI] [PubMed] [Google Scholar]
  33. Maggio R., Vogel Z., Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3103–3107. doi: 10.1073/pnas.90.7.3103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McLatchie L. M., Fraser N. J., Main M. J., Wise A., Brown J., Thompson N., Solari R., Lee M. G., Foord S. M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998 May 28;393(6683):333–339. doi: 10.1038/30666. [DOI] [PubMed] [Google Scholar]
  35. Monnot C., Bihoreau C., Conchon S., Curnow K. M., Corvol P., Clauser E. Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J Biol Chem. 1996 Jan 19;271(3):1507–1513. doi: 10.1074/jbc.271.3.1507. [DOI] [PubMed] [Google Scholar]
  36. New D. C., Wong J. T. The evidence for G-protein-coupled receptors and heterotrimeric G proteins in protozoa and ancestral metazoa. Biol Signals Recept. 1998 Mar-Apr;7(2):98–108. doi: 10.1159/000014535. [DOI] [PubMed] [Google Scholar]
  37. O'Dowd B. F., Hnatowich M., Caron M. G., Lefkowitz R. J., Bouvier M. Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem. 1989 May 5;264(13):7564–7569. [PubMed] [Google Scholar]
  38. O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
  39. Okamoto T., Sekiyama N., Otsu M., Shimada Y., Sato A., Nakanishi S., Jingami H. Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. J Biol Chem. 1998 May 22;273(21):13089–13096. doi: 10.1074/jbc.273.21.13089. [DOI] [PubMed] [Google Scholar]
  40. Oliveira L., Paiva A. C., Sander C., Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci. 1994 Jun;15(6):170–172. doi: 10.1016/0165-6147(94)90137-6. [DOI] [PubMed] [Google Scholar]
  41. Pantaloni C., Brabet P., Bilanges B., Dumuis A., Houssami S., Spengler D., Bockaert J., Journot L. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem. 1996 Sep 6;271(36):22146–22151. doi: 10.1074/jbc.271.36.22146. [DOI] [PubMed] [Google Scholar]
  42. Pin J. P., Bockaert J. Get receptive to metabotropic glutamate receptors. Curr Opin Neurobiol. 1995 Jun;5(3):342–349. doi: 10.1016/0959-4388(95)80047-6. [DOI] [PubMed] [Google Scholar]
  43. Pin J. P. Synaptic transmission. The two faces of glutamate. Nature. 1998 Jul 2;394(6688):19–21. doi: 10.1038/27771. [DOI] [PubMed] [Google Scholar]
  44. Plakidou-Dymock S., Dymock D., Hooley R. A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr Biol. 1998 Mar 12;8(6):315–324. doi: 10.1016/s0960-9822(98)70131-9. [DOI] [PubMed] [Google Scholar]
  45. Rodbell M. The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr Top Cell Regul. 1992;32:1–47. doi: 10.1016/b978-0-12-152832-4.50003-3. [DOI] [PubMed] [Google Scholar]
  46. Romano C., Yang W. L., O'Malley K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem. 1996 Nov 8;271(45):28612–28616. doi: 10.1074/jbc.271.45.28612. [DOI] [PubMed] [Google Scholar]
  47. Scheer A., Fanelli F., Costa T., De Benedetti P. G., Cotecchia S. Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 1996 Jul 15;15(14):3566–3578. [PMC free article] [PubMed] [Google Scholar]
  48. Spengler D., Waeber C., Pantaloni C., Holsboer F., Bockaert J., Seeburg P. H., Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993 Sep 9;365(6442):170–175. doi: 10.1038/365170a0. [DOI] [PubMed] [Google Scholar]
  49. Trumpp-Kallmeyer S., Chini B., Mouillac B., Barberis C., Hoflack J., Hibert M. Towards understanding the role of the first extracellular loop for the binding of peptide hormones to G-protein coupled receptors. Pharm Acta Helv. 1995 Sep;70(3):255–262. doi: 10.1016/0031-6865(95)00029-9. [DOI] [PubMed] [Google Scholar]
  50. Tu J. C., Xiao B., Yuan J. P., Lanahan A. A., Leoffert K., Li M., Linden D. J., Worley P. F. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 1998 Oct;21(4):717–726. doi: 10.1016/s0896-6273(00)80589-9. [DOI] [PubMed] [Google Scholar]
  51. Ullmer C., Schmuck K., Figge A., Lübbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 1998 Mar 6;424(1-2):63–68. doi: 10.1016/s0014-5793(98)00141-0. [DOI] [PubMed] [Google Scholar]
  52. Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
  53. Vernier P., Cardinaud B., Valdenaire O., Philippe H., Vincent J. D. An evolutionary view of drug-receptor interaction: the bioamine receptor family. Trends Pharmacol Sci. 1995 Nov;16(11):375–381. doi: 10.1016/s0165-6147(00)89078-1. [DOI] [PubMed] [Google Scholar]
  54. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997 Apr;11(5):346–354. [PubMed] [Google Scholar]
  55. White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord S. M., Marshall F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998 Dec 17;396(6712):679–682. doi: 10.1038/25354. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES