Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 1;18(7):1900–1904. doi: 10.1093/emboj/18.7.1900

Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone.

R E Weiss 1, J Xu 1, G Ning 1, J Pohlenz 1, B W O'Malley 1, S Refetoff 1
PMCID: PMC1171275  PMID: 10202153

Abstract

Steroid receptor co-activator 1 (SRC-1) is a transcription co-factor that enhances the hormone-dependent action, mediated by the thyroid hormone (TH) receptor (TR) and other nuclear receptors. In vitro studies have shown that SRC-1 is necessary for the full expression of TH effect. SRC-1 knockout mice (SRC-1(-/-)) provide a model to examine the role of this co-activator on TH action in vivo. At baseline, SRC-1(-/-) mice display resistance to TH (RTH) as evidenced by a 2.5-fold elevation of serum TSH levels, despite a 50% increase in serum free TH levels as compared with wild-type (SRC-1(+/+)) mice. When mice were made hypothyroid, TSH levels increased, obliterating the difference between SRC-1(+/+) and SRC-1(-/-) mice observed at baseline. In contrast, the decline of TSH by treatment with L-triiodothyronine was severely blunted in SRC-1(-/-) mice. These data indicate that SRC-1 is not required for the upregulation of TSH in TH deficiency. However, SRC-1 enhances the sensitivity of TSH downregulation by TH. This is the first demonstration of RTH caused by a deficient co-factor other than TR. It supports the hypothesis that a putative defect in the SRC-1 gene or another co-factor could be the cause of RTH in humans without mutations in the TR genes.

Full Text

The Full Text of this article is available as a PDF (157.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. C., Workman J. L. Nucleosome displacement in transcription. Cell. 1993 Feb 12;72(3):305–308. doi: 10.1016/0092-8674(93)90109-4. [DOI] [PubMed] [Google Scholar]
  2. Adams M., Matthews C., Collingwood T. N., Tone Y., Beck-Peccoz P., Chatterjee K. K. Genetic analysis of 29 kindreds with generalized and pituitary resistance to thyroid hormone. Identification of thirteen novel mutations in the thyroid hormone receptor beta gene. J Clin Invest. 1994 Aug;94(2):506–515. doi: 10.1172/JCI117362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
  4. Collingwood T. N., Wagner R., Matthews C. H., Clifton-Bligh R. J., Gurnell M., Rajanayagam O., Agostini M., Fletterick R. J., Beck-Peccoz P., Reinhardt W. A role for helix 3 of the TRbeta ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. EMBO J. 1998 Aug 17;17(16):4760–4770. doi: 10.1093/emboj/17.16.4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feng W., Ribeiro R. C., Wagner R. L., Nguyen H., Apriletti J. W., Fletterick R. J., Baxter J. D., Kushner P. J., West B. L. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science. 1998 Jun 12;280(5370):1747–1749. doi: 10.1126/science.280.5370.1747. [DOI] [PubMed] [Google Scholar]
  6. Forrest D., Erway L. C., Ng L., Altschuler R., Curran T. Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet. 1996 Jul;13(3):354–357. doi: 10.1038/ng0796-354. [DOI] [PubMed] [Google Scholar]
  7. Gauthier K., Chassande O., Plateroti M., Roux J. P., Legrand C., Pain B., Rousset B., Weiss R., Trouillas J., Samarut J. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 1999 Feb 1;18(3):623–631. doi: 10.1093/emboj/18.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi Y., Ohmori S., Ito T., Seo H. A splicing variant of Steroid Receptor Coactivator-1 (SRC-1E): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem Biophys Res Commun. 1997 Jul 9;236(1):83–87. doi: 10.1006/bbrc.1997.6911. [DOI] [PubMed] [Google Scholar]
  9. Hayashi Y., Weiss R. E., Sarne D. H., Yen P. M., Sunthornthepvarakul T., Marcocci C., Chin W. W., Refetoff S. Do clinical manifestations of resistance to thyroid hormone correlate with the functional alteration of the corresponding mutant thyroid hormone-beta receptors? J Clin Endocrinol Metab. 1995 Nov;80(11):3246–3256. doi: 10.1210/jcem.80.11.7593433. [DOI] [PubMed] [Google Scholar]
  10. Hollenberg A. N., Monden T., Flynn T. R., Boers M. E., Cohen O., Wondisford F. E. The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol. 1995 May;9(5):540–550. doi: 10.1210/mend.9.5.7565802. [DOI] [PubMed] [Google Scholar]
  11. Jeyakumar M., Tanen M. R., Bagchi M. K. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor. Mol Endocrinol. 1997 Jun;11(6):755–767. doi: 10.1210/mend.11.6.0003. [DOI] [PubMed] [Google Scholar]
  12. Kurokawa R., Söderström M., Hörlein A., Halachmi S., Brown M., Rosenfeld M. G., Glass C. K. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995 Oct 5;377(6548):451–454. doi: 10.1038/377451a0. [DOI] [PubMed] [Google Scholar]
  13. Liu Y., Takeshita A., Misiti S., Chin W. W., Yen P. M. Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology. 1998 Oct;139(10):4197–4204. doi: 10.1210/endo.139.10.6218. [DOI] [PubMed] [Google Scholar]
  14. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Misiti S., Schomburg L., Yen P. M., Chin W. W. Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology. 1998 May;139(5):2493–2500. doi: 10.1210/endo.139.5.5971. [DOI] [PubMed] [Google Scholar]
  16. Nagy L., Kao H. Y., Chakravarti D., Lin R. J., Hassig C. A., Ayer D. E., Schreiber S. L., Evans R. M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997 May 2;89(3):373–380. doi: 10.1016/s0092-8674(00)80218-4. [DOI] [PubMed] [Google Scholar]
  17. Oñate S. A., Tsai S. Y., Tsai M. J., O'Malley B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354–1357. doi: 10.1126/science.270.5240.1354. [DOI] [PubMed] [Google Scholar]
  18. Sande S., Privalsky M. L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol. 1996 Jul;10(7):813–825. doi: 10.1210/mend.10.7.8813722. [DOI] [PubMed] [Google Scholar]
  19. Tagami T., Gu W. X., Peairs P. T., West B. L., Jameson J. L. A novel natural mutation in the thyroid hormone receptor defines a dual functional domain that exchanges nuclear receptor corepressors and coactivators. Mol Endocrinol. 1998 Dec;12(12):1888–1902. doi: 10.1210/mend.12.12.0201. [DOI] [PubMed] [Google Scholar]
  20. Tagami T., Madison L. D., Nagaya T., Jameson J. L. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol. 1997 May;17(5):2642–2648. doi: 10.1128/mcb.17.5.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Torchia J., Rose D. W., Inostroza J., Kamei Y., Westin S., Glass C. K., Rosenfeld M. G. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997 Jun 12;387(6634):677–684. doi: 10.1038/42652. [DOI] [PubMed] [Google Scholar]
  22. Voegel J. J., Heine M. J., Zechel C., Chambon P., Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996 Jul 15;15(14):3667–3675. [PMC free article] [PubMed] [Google Scholar]
  23. Weiss R. E., Forrest D., Pohlenz J., Cua K., Curran T., Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor beta-deficient mice. Endocrinology. 1997 Sep;138(9):3624–3629. doi: 10.1210/endo.138.9.5412. [DOI] [PubMed] [Google Scholar]
  24. Weiss R. E., Hayashi Y., Nagaya T., Petty K. J., Murata Y., Tunca H., Seo H., Refetoff S. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor alpha or beta genes may be due to a defective cofactor. J Clin Endocrinol Metab. 1996 Dec;81(12):4196–4203. doi: 10.1210/jcem.81.12.8954015. [DOI] [PubMed] [Google Scholar]
  25. Wong J., Patterton D., Imhof A., Guschin D., Shi Y. B., Wolffe A. P. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J. 1998 Jan 15;17(2):520–534. doi: 10.1093/emboj/17.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu J., Qiu Y., DeMayo F. J., Tsai S. Y., Tsai M. J., O'Malley B. W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998 Mar 20;279(5358):1922–1925. doi: 10.1126/science.279.5358.1922. [DOI] [PubMed] [Google Scholar]
  27. Yoh S. M., Chatterjee V. K., Privalsky M. L. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol. 1997 Apr;11(4):470–480. doi: 10.1210/mend.11.4.9914. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES