Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 1;18(7):1974–1981. doi: 10.1093/emboj/18.7.1974

Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism.

S S Eaglestone 1, B S Cox 1, M F Tuite 1
PMCID: PMC1171282  PMID: 10202160

Abstract

[PSI+] is a protein-based heritable phenotype of the yeast Saccharomyces cerevisiae which reflects the prion-like behaviour of the endogenous Sup35p protein release factor. [PSI+] strains exhibit a marked decrease in translation termination efficiency, which permits decoding of translation termination signals and, presumably, the production of abnormally extended polypeptides. We have examined whether the [PSI+]-induced expression of such an altered proteome might confer some selective growth advantage over [psi-] strains. Although otherwise isogenic [PSI+] and [psi-] strains show no difference in growth rates under normal laboratory conditions, we demonstrate that [PSI+] strains do exhibit enhanced tolerance to heat and chemical stress, compared with [psi-] strains. Moreover, we also show that the prion-like determinant [PSI+] is able to regulate translation termination efficiency in response to environmental stress, since growth in the presence of ethanol results in a transient increase in the efficiency of translation termination and a loss of the [PSI+] phenotype. We present a model to describe the prion-mediated regulation of translation termination efficiency and discuss its implications in relation to the potential physiological role of prions in S.cerevisiae and other fungi.

Full Text

The Full Text of this article is available as a PDF (265.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu J., Williams B. C., Li Z., Williams E. V., Goldberg M. L. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis. Cell Motil Cytoskeleton. 1998;39(4):286–302. doi: 10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  2. Bearn A. G. Archibald Edward Garrod, the reluctant geneticist. Genetics. 1994 May;137(1):1–4. doi: 10.1093/genetics/137.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonetti B., Fu L., Moon J., Bedwell D. M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995 Aug 18;251(3):334–345. doi: 10.1006/jmbi.1995.0438. [DOI] [PubMed] [Google Scholar]
  4. Chernoff Y. O., Derkach I. L., Inge-Vechtomov S. G. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet. 1993 Sep;24(3):268–270. doi: 10.1007/BF00351802. [DOI] [PubMed] [Google Scholar]
  5. Chernoff Y. O., Lindquist S. L., Ono B., Inge-Vechtomov S. G., Liebman S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 1995 May 12;268(5212):880–884. doi: 10.1126/science.7754373. [DOI] [PubMed] [Google Scholar]
  6. Coustou V., Deleu C., Saupe S., Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9773–9778. doi: 10.1073/pnas.94.18.9773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox B. S., Tuite M. F., McLaughlin C. S. The psi factor of yeast: a problem in inheritance. Yeast. 1988 Sep;4(3):159–178. doi: 10.1002/yea.320040302. [DOI] [PubMed] [Google Scholar]
  8. Cox B. Cytoplasmic inheritance. Prion-like factors in yeast. Curr Biol. 1994 Aug 1;4(8):744–748. doi: 10.1016/s0960-9822(00)00167-6. [DOI] [PubMed] [Google Scholar]
  9. Fearon K., McClendon V., Bonetti B., Bedwell D. M. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem. 1994 Jul 8;269(27):17802–17808. [PubMed] [Google Scholar]
  10. Firoozan M., Grant C. M., Duarte J. A., Tuite M. F. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast. 1991 Feb;7(2):173–183. doi: 10.1002/yea.320070211. [DOI] [PubMed] [Google Scholar]
  11. Fischer M., Rülicke T., Raeber A., Sailer A., Moser M., Oesch B., Brandner S., Aguzzi A., Weissmann C. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 1996 Mar 15;15(6):1255–1264. [PMC free article] [PubMed] [Google Scholar]
  12. Grant C. M., Firoozan M., Tuite M. F. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1989 Feb;3(2):215–220. doi: 10.1111/j.1365-2958.1989.tb01810.x. [DOI] [PubMed] [Google Scholar]
  13. Griffith J. S. Self-replication and scrapie. Nature. 1967 Sep 2;215(5105):1043–1044. doi: 10.1038/2151043a0. [DOI] [PubMed] [Google Scholar]
  14. Horwich A. L., Weissman J. S. Deadly conformations--protein misfolding in prion disease. Cell. 1997 May 16;89(4):499–510. doi: 10.1016/s0092-8674(00)80232-9. [DOI] [PubMed] [Google Scholar]
  15. Kikuchi Y., Shimatake H., Kikuchi A. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J. 1988 Apr;7(4):1175–1182. doi: 10.1002/j.1460-2075.1988.tb02928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kushnirov V. V., Ter-Avanesyan M. D., Telckov M. V., Surguchov A. P., Smirnov V. N., Inge-Vechtomov S. G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene. 1988 Jun 15;66(1):45–54. doi: 10.1016/0378-1119(88)90223-5. [DOI] [PubMed] [Google Scholar]
  17. Lindquist S., Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5301–5306. doi: 10.1073/pnas.93.11.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindquist S. Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell. 1997 May 16;89(4):495–498. doi: 10.1016/s0092-8674(00)80231-7. [DOI] [PubMed] [Google Scholar]
  19. Liu H., Styles C. A., Fink G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 1996 Nov;144(3):967–978. doi: 10.1093/genetics/144.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mager W. H., Ferreira P. M. Stress response of yeast. Biochem J. 1993 Feb 15;290(Pt 1):1–13. doi: 10.1042/bj2900001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oesch B., Westaway D., Wälchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985 Apr;40(4):735–746. doi: 10.1016/0092-8674(85)90333-2. [DOI] [PubMed] [Google Scholar]
  22. Patino M. M., Liu J. J., Glover J. R., Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996 Aug 2;273(5275):622–626. doi: 10.1126/science.273.5275.622. [DOI] [PubMed] [Google Scholar]
  23. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997 May;17(5):2798–2805. doi: 10.1128/mcb.17.5.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 1996 Jun 17;15(12):3127–3134. [PMC free article] [PubMed] [Google Scholar]
  25. Piper P. W. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):121–127. doi: 10.1111/j.1574-6968.1995.tb07925.x. [DOI] [PubMed] [Google Scholar]
  26. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  27. Sanchez Y., Lindquist S. L. HSP104 required for induced thermotolerance. Science. 1990 Jun 1;248(4959):1112–1115. doi: 10.1126/science.2188365. [DOI] [PubMed] [Google Scholar]
  28. Sanchez Y., Taulien J., Borkovich K. A., Lindquist S. Hsp104 is required for tolerance to many forms of stress. EMBO J. 1992 Jun;11(6):2357–2364. doi: 10.1002/j.1460-2075.1992.tb05295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Santos M. A., Perreau V. M., Tuite M. F. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J. 1996 Sep 16;15(18):5060–5068. [PMC free article] [PubMed] [Google Scholar]
  30. Stansfield I., Akhmaloka, Tuite M. F. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet. 1995 Apr;27(5):417–426. doi: 10.1007/BF00311210. [DOI] [PubMed] [Google Scholar]
  31. Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Poznyakovski A. I., Paushkin S. V., Nierras C. R., Cox B. S., Ter-Avanesyan M. D., Tuite M. F. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365–4373. doi: 10.1002/j.1460-2075.1995.tb00111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ter-Avanesyan M. D., Dagkesamanskaya A. R., Kushnirov V. V., Smirnov V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics. 1994 Jul;137(3):671–676. doi: 10.1093/genetics/137.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., Smirnov V. N. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993 Mar;7(5):683–692. doi: 10.1111/j.1365-2958.1993.tb01159.x. [DOI] [PubMed] [Google Scholar]
  34. Tuite M. F., Bentley N. J., Bossier P., Fitch I. T. The structure and function of small heat shock proteins: analysis of the Saccharomyces cerevisiae Hsp26 protein. Antonie Van Leeuwenhoek. 1990 Oct;58(3):147–154. doi: 10.1007/BF00548925. [DOI] [PubMed] [Google Scholar]
  35. Tuite M. F., Lindquist S. L. Maintenance and inheritance of yeast prions. Trends Genet. 1996 Nov;12(11):467–471. doi: 10.1016/0168-9525(96)10045-7. [DOI] [PubMed] [Google Scholar]
  36. Tuite M. F., Mundy C. R., Cox B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics. 1981 Aug;98(4):691–711. doi: 10.1093/genetics/98.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weissmann C. The Ninth Datta Lecture. Molecular biology of transmissible spongiform encephalopathies. FEBS Lett. 1996 Jun 24;389(1):3–11. doi: 10.1016/0014-5793(96)00610-2. [DOI] [PubMed] [Google Scholar]
  38. Wickner R. B., Masison D. C. Evidence for two prions in yeast: [URE3] and [PSI]. Curr Top Microbiol Immunol. 1996;207:147–160. doi: 10.1007/978-3-642-60983-1_10. [DOI] [PubMed] [Google Scholar]
  39. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 Aug 15;14(16):4065–4072. doi: 10.1002/j.1460-2075.1995.tb00078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES