Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 15;18(8):2066–2073. doi: 10.1093/emboj/18.8.2066

AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues.

A Marchant 1, J Kargul 1, S T May 1, P Muller 1, A Delbarre 1, C Perrot-Rechenmann 1, M J Bennett 1
PMCID: PMC1171291  PMID: 10205161

Abstract

Plants employ a specialized transport system composed of separate influx and efflux carriers to mobilize the plant hormone auxin between its site(s) of synthesis and action. Mutations within the permease-like AUX1 protein significantly reduce the rate of carrier-mediated auxin uptake within Arabidopsis roots, conferring an agravitropic phenotype. We are able to bypass the defect within auxin uptake and restore the gravitropic root phenotype of aux1 by growing mutant seedlings in the presence of the membrane-permeable synthetic auxin, 1-naphthaleneacetic acid. We illustrate that AUX1 expression overlaps that previously described for the auxin efflux carrier, AtPIN2, using transgenic lines expressing an AUX1 promoter::uidA (GUS) gene. Finally, we demonstrate that AUX1 regulates gravitropic curvature by acting in unison with the auxin efflux carrier to co-ordinate the localized redistribution of auxin within the Arabidopsis root apex. Our results provide the first example of a developmental role for the auxin influx carrier within higher plants and supply new insight into the molecular basis of gravitropic signalling.

Full Text

The Full Text of this article is available as a PDF (359.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Nguyen M. D., Theologis A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol. 1995 Aug 25;251(4):533–549. doi: 10.1006/jmbi.1995.0454. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., Walker A. R., Schulz B., Feldmann K. A. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996 Aug 16;273(5277):948–950. doi: 10.1126/science.273.5277.948. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. J., Marchant A., May S. T., Swarup R. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci. 1998 Sep 29;353(1374):1511–1515. doi: 10.1098/rstb.1998.0306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blancaflor E. B., Fasano J. M., Gilroy S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 1998 Jan;116(1):213–222. doi: 10.1104/pp.116.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen R., Hilson P., Sedbrook J., Rosen E., Caspar T., Masson P. H. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112–15117. doi: 10.1073/pnas.95.25.15112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  7. Evans M. L. Gravitropism: interaction of sensitivity modulation and effector redistribution. Plant Physiol. 1991;95:1–5. doi: 10.1104/pp.95.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garbers C., DeLong A., Deruére J., Bernasconi P., Söll D. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 1996 May 1;15(9):2115–2124. [PMC free article] [PubMed] [Google Scholar]
  9. Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998 Dec 18;282(5397):2226–2230. doi: 10.1126/science.282.5397.2226. [DOI] [PubMed] [Google Scholar]
  10. Harrison M. A., Pickard B. G. Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol. 1989;89:652–657. doi: 10.1104/pp.89.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishikawa H., Hasenstein K. H., Evans M. L. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism. Planta. 1991 Feb;183(3):381–390. doi: 10.1007/BF00197737. [DOI] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katekar G. F., Geissler A. E. Auxin Transport Inhibitors: III. Chemical Requirements of a Class of Auxin Transport Inhibitors. Plant Physiol. 1977 Dec;60(6):826–829. doi: 10.1104/pp.60.6.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leyser H. M., Pickett F. B., Dharmasiri S., Estelle M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996 Sep;10(3):403–413. doi: 10.1046/j.1365-313x.1996.10030403.x. [DOI] [PubMed] [Google Scholar]
  15. Luschnig C., Gaxiola R. A., Grisafi P., Fink G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998 Jul 15;12(14):2175–2187. doi: 10.1101/gad.12.14.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maathuis F. J., May S. T., Graham N. S., Bowen H. C., Jelitto T. C., Trimmer P., Bennett M. J., Sanders D., White P. J. Cell marking in Arabidopsis thaliana and its application to patch-clamp studies. Plant J. 1998 Sep;15(6):843–851. doi: 10.1046/j.1365-313x.1998.00256.x. [DOI] [PubMed] [Google Scholar]
  17. Maher E. P., Martindale S. J. Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet. 1980 Dec;18(11-12):1041–1053. doi: 10.1007/BF00484337. [DOI] [PubMed] [Google Scholar]
  18. Migliaccio F., Rayle D. L. Effect of asymmetric auxin application on Helianthus hypocotyl curvature. Plant Physiol. 1989;91:466–468. doi: 10.1104/pp.91.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Müller A., Guan C., Gälweiler L., Tänzler P., Huijser P., Marchant A., Parry G., Bennett M., Wisman E., Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998 Dec 1;17(23):6903–6911. doi: 10.1093/emboj/17.23.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parker K. E., Briggs W. R. Transport of indoleacetic Acid in intact corn coleoptiles. Plant Physiol. 1990 Oct;94(2):417–423. doi: 10.1104/pp.94.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. doi: 10.1093/genetics/139.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rouse D., Mackay P., Stirnberg P., Estelle M., Leyser O. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998 Feb 27;279(5355):1371–1373. doi: 10.1126/science.279.5355.1371. [DOI] [PubMed] [Google Scholar]
  25. Ruegger M., Dewey E., Hobbie L., Brown D., Bernasconi P., Turner J., Muday G., Estelle M. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 1997 May;9(5):745–757. doi: 10.1105/tpc.9.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shen W. J., Forde B. G. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. 1989 Oct 25;17(20):8385–8385. doi: 10.1093/nar/17.20.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Suttle J. C. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Plant Physiol. 1988 Nov;88(3):795–799. doi: 10.1104/pp.88.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trewavas A. J. What remains of the Cholodny-Went theory? A summing up. Plant Cell Environ. 1992 Sep;15(7):793–794. [PubMed] [Google Scholar]
  29. Utsuno K., Shikanai T., Yamada Y., Hashimoto T. Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 1998 Oct;39(10):1111–1118. doi: 10.1093/oxfordjournals.pcp.a029310. [DOI] [PubMed] [Google Scholar]
  30. Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]
  31. Young L. M., Evans M. L., Hertel R. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol. 1990;92:792–796. doi: 10.1104/pp.92.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES