Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 15;18(8):2084–2091. doi: 10.1093/emboj/18.8.2084

Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.

T Dierks 1, M R Lecca 1, P Schlotterhose 1, B Schmidt 1, K von Figura 1
PMCID: PMC1171293  PMID: 10205163

Abstract

Sulfatases carry at their catalytic site a unique post-translational modification, an alpha-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide. The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPSR motif was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR motif in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two motifs, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family.

Full Text

The Full Text of this article is available as a PDF (405.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Androlewicz M. J., Anderson K. S., Cresswell P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9130–9134. doi: 10.1073/pnas.90.19.9130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond C. S., Clements P. R., Ashby S. J., Collyer C. A., Harrop S. J., Hopwood J. J., Guss J. M. Structure of a human lysosomal sulfatase. Structure. 1997 Feb 15;5(2):277–289. doi: 10.1016/s0969-2126(97)00185-8. [DOI] [PubMed] [Google Scholar]
  3. Dierks T., Lecca M. R., Schmidt B., von Figura K. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS Lett. 1998 Feb 13;423(1):61–65. doi: 10.1016/s0014-5793(98)00065-9. [DOI] [PubMed] [Google Scholar]
  4. Dierks T., Miech C., Hummerjohann J., Schmidt B., Kertesz M. A., von Figura K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem. 1998 Oct 2;273(40):25560–25564. doi: 10.1074/jbc.273.40.25560. [DOI] [PubMed] [Google Scholar]
  5. Dierks T., Schmidt B., von Figura K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11963–11968. doi: 10.1073/pnas.94.22.11963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dierks T., Volkmer J., Schlenstedt G., Jung C., Sandholzer U., Zachmann K., Schlotterhose P., Neifer K., Schmidt B., Zimmermann R. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum. EMBO J. 1996 Dec 16;15(24):6931–6942. [PMC free article] [PubMed] [Google Scholar]
  7. Dotson S. B., Smith C. E., Ling C. S., Barry G. F., Kishore G. M. Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. J Biol Chem. 1996 Oct 18;271(42):25754–25761. doi: 10.1074/jbc.271.42.25754. [DOI] [PubMed] [Google Scholar]
  8. Duret L., Guex N., Peitsch M. C., Bairoch A. New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res. 1998 Apr;8(4):348–353. doi: 10.1101/gr.8.4.348. [DOI] [PubMed] [Google Scholar]
  9. Franco B., Meroni G., Parenti G., Levilliers J., Bernard L., Gebbia M., Cox L., Maroteaux P., Sheffield L., Rappold G. A. A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell. 1995 Apr 7;81(1):15–25. doi: 10.1016/0092-8674(95)90367-4. [DOI] [PubMed] [Google Scholar]
  10. Knaust A., Schmidt B., Dierks T., von Bülow R., von Figura K. Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A. Biochemistry. 1998 Oct 6;37(40):13941–13946. doi: 10.1021/bi9810205. [DOI] [PubMed] [Google Scholar]
  11. Lukatela G., Krauss N., Theis K., Selmer T., Gieselmann V., von Figura K., Saenger W. Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry. 1998 Mar 17;37(11):3654–3664. doi: 10.1021/bi9714924. [DOI] [PubMed] [Google Scholar]
  12. Miech C., Dierks T., Selmer T., von Figura K., Schmidt B. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J Biol Chem. 1998 Feb 27;273(9):4835–4837. doi: 10.1074/jbc.273.9.4835. [DOI] [PubMed] [Google Scholar]
  13. Neefjes J. J., Momburg F., Hämmerling G. J. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science. 1993 Aug 6;261(5122):769–771. doi: 10.1126/science.8342042. [DOI] [PubMed] [Google Scholar]
  14. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  15. Parenti G., Meroni G., Ballabio A. The sulfatase gene family. Curr Opin Genet Dev. 1997 Jun;7(3):386–391. doi: 10.1016/s0959-437x(97)80153-0. [DOI] [PubMed] [Google Scholar]
  16. Recksiek M., Selmer T., Dierks T., Schmidt B., von Figura K. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J Biol Chem. 1998 Mar 13;273(11):6096–6103. doi: 10.1074/jbc.273.11.6096. [DOI] [PubMed] [Google Scholar]
  17. Schirmer A., Kolter R. Computational analysis of bacterial sulfatases and their modifying enzymes. Chem Biol. 1998 Aug;5(8):R181–R186. doi: 10.1016/s1074-5521(98)90154-5. [DOI] [PubMed] [Google Scholar]
  18. Schmidt B., Selmer T., Ingendoh A., von Figura K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell. 1995 Jul 28;82(2):271–278. doi: 10.1016/0092-8674(95)90314-3. [DOI] [PubMed] [Google Scholar]
  19. Selmer T., Hallmann A., Schmidt B., Sumper M., von Figura K. The evolutionary conservation of a novel protein modification, the conversion of cysteine to serinesemialdehyde in arylsulfatase from Volvox carteri. Eur J Biochem. 1996 Jun 1;238(2):341–345. doi: 10.1111/j.1432-1033.1996.0341z.x. [DOI] [PubMed] [Google Scholar]
  20. Shepherd J. C., Schumacher T. N., Ashton-Rickardt P. G., Imaeda S., Ploegh H. L., Janeway C. A., Jr, Tonegawa S. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell. 1993 Aug 13;74(3):577–584. doi: 10.1016/0092-8674(93)80058-m. [DOI] [PubMed] [Google Scholar]
  21. Sommerlade H. J., Selmer T., Ingendoh A., Gieselmann V., von Figura K., Neifer K., Schmidt B. Glycosylation and phosphorylation of arylsulfatase A. J Biol Chem. 1994 Aug 19;269(33):20977–20981. [PubMed] [Google Scholar]
  22. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
  23. Yang Y. G., Ohta S., Yamada S., Shimizu M., Takagaki Y. Diversity of T cell receptor delta-chain cDNA in the thymus of a one-month-old pig. J Immunol. 1995 Aug 15;155(4):1981–1993. [PubMed] [Google Scholar]
  24. von Figura K., Schmidt B., Selmer T., Dierks T. A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease. Bioessays. 1998 Jun;20(6):505–510. doi: 10.1002/(SICI)1521-1878(199806)20:6<505::AID-BIES9>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES