Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Apr 15;18(8):2165–2173. doi: 10.1093/emboj/18.8.2165

Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins.

U Huynh-Do 1, E Stein 1, A A Lane 1, H Liu 1, D P Cerretti 1, T O Daniel 1
PMCID: PMC1171300  PMID: 10205170

Abstract

Receptors of the Eph family and their ligands (ephrins) mediate developmental vascular assembly and direct axonal guidance. Migrating cell processes identify appropriate targets within migratory fields based on topographically displayed ephrin gradients. Here, EphB1 regulated cell attachment by discriminating the density at which ephrin-B1 was displayed on a reconstituted surface. EphB1-ephrin-B1 engagement did not promote cell attachment through mechanical tethering, but did activate integrin-mediated attachment. In endothelial cells, attachment to RGD peptides or fibrinogen was mediated through alphavbeta3 integrin. EphB1 transfection conferred ephrin-B1-responsive activation of alpha5beta1 integrin-mediated cell attachment in human embryonic kidney cells. Activation-competent but signaling-defective EphB1 point mutants failed to stimulate ephrin-B1 dependent attachment. These findings lead us to propose that EphB1 functions as a 'ligand density sensor' to signal integrin-mediated cell-matrix attachment.

Full Text

The Full Text of this article is available as a PDF (276.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader B. L., Rayburn H., Crowley D., Hynes R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998 Nov 13;95(4):507–519. doi: 10.1016/s0092-8674(00)81618-9. [DOI] [PubMed] [Google Scholar]
  2. Beckmann M. P., Cerretti D. P., Baum P., Vanden Bos T., James L., Farrah T., Kozlosky C., Hollingsworth T., Shilling H., Maraskovsky E. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994 Aug 15;13(16):3757–3762. doi: 10.1002/j.1460-2075.1994.tb06685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett J. S., Chan C., Vilaire G., Mousa S. A., DeGrado W. F. Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997 Mar 28;272(13):8137–8140. doi: 10.1074/jbc.272.13.8137. [DOI] [PubMed] [Google Scholar]
  4. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  5. Brückner K., Pasquale E. B., Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 1997 Mar 14;275(5306):1640–1643. doi: 10.1126/science.275.5306.1640. [DOI] [PubMed] [Google Scholar]
  6. Böhme B., VandenBos T., Cerretti D. P., Park L. S., Holtrich U., Rübsamen-Waigmann H., Strebhardt K. Cell-cell adhesion mediated by binding of membrane-anchored ligand LERK-2 to the EPH-related receptor human embryonal kinase 2 promotes tyrosine kinase activity. J Biol Chem. 1996 Oct 4;271(40):24747–24752. doi: 10.1074/jbc.271.40.24747. [DOI] [PubMed] [Google Scholar]
  7. Cheng H. J., Nakamoto M., Bergemann A. D., Flanagan J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell. 1995 Aug 11;82(3):371–381. doi: 10.1016/0092-8674(95)90426-3. [DOI] [PubMed] [Google Scholar]
  8. Drescher U., Kremoser C., Handwerker C., Löschinger J., Noda M., Bonhoeffer F. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell. 1995 Aug 11;82(3):359–370. doi: 10.1016/0092-8674(95)90425-5. [DOI] [PubMed] [Google Scholar]
  9. Friedlander M., Brooks P. C., Shaffer R. W., Kincaid C. M., Varner J. A., Cheresh D. A. Definition of two angiogenic pathways by distinct alpha v integrins. Science. 1995 Dec 1;270(5241):1500–1502. doi: 10.1126/science.270.5241.1500. [DOI] [PubMed] [Google Scholar]
  10. Gale N. W., Holland S. J., Valenzuela D. M., Flenniken A., Pan L., Ryan T. E., Henkemeyer M., Strebhardt K., Hirai H., Wilkinson D. G. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron. 1996 Jul;17(1):9–19. doi: 10.1016/s0896-6273(00)80276-7. [DOI] [PubMed] [Google Scholar]
  11. Holland S. J., Gale N. W., Gish G. D., Roth R. A., Songyang Z., Cantley L. C., Henkemeyer M., Yancopoulos G. D., Pawson T. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 1997 Jul 1;16(13):3877–3888. doi: 10.1093/emboj/16.13.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holland S. J., Gale N. W., Mbamalu G., Yancopoulos G. D., Henkemeyer M., Pawson T. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature. 1996 Oct 24;383(6602):722–725. doi: 10.1038/383722a0. [DOI] [PubMed] [Google Scholar]
  13. Hughes P. E., O'Toole T. E., Ylänne J., Shattil S. J., Ginsberg M. H. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem. 1995 May 26;270(21):12411–12417. doi: 10.1074/jbc.270.21.12411. [DOI] [PubMed] [Google Scholar]
  14. Labrador J. P., Brambilla R., Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 1997 Jul 1;16(13):3889–3897. doi: 10.1093/emboj/16.13.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehmann J. M., Riethmüller G., Johnson J. P. Nck, a melanoma cDNA encoding a cytoplasmic protein consisting of the src homology units SH2 and SH3. Nucleic Acids Res. 1990 Feb 25;18(4):1048–1048. doi: 10.1093/nar/18.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin M., Schoecklmann H., Foster G., Barley-Maloney L., McKanna J., Daniel T. O. Identification of a subpopulation of human renal microvascular endothelial cells with capacity to form capillary-like cord and tube structures. In Vitro Cell Dev Biol Anim. 1997 Apr;33(4):261–269. doi: 10.1007/s11626-997-0045-y. [DOI] [PubMed] [Google Scholar]
  17. Mehta R. J., Diefenbach B., Brown A., Cullen E., Jonczyk A., Güssow D., Luckenbach G. A., Goodman S. L. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor? Biochem J. 1998 Mar 1;330(Pt 2):861–869. doi: 10.1042/bj3300861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyamoto S., Teramoto H., Coso O. A., Gutkind J. S., Burbelo P. D., Akiyama S. K., Yamada K. M. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995 Nov;131(3):791–805. doi: 10.1083/jcb.131.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakamoto M., Cheng H. J., Friedman G. C., McLaughlin T., Hansen M. J., Yoon C. H., O'Leary D. D., Flanagan J. G. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell. 1996 Sep 6;86(5):755–766. doi: 10.1016/s0092-8674(00)80150-6. [DOI] [PubMed] [Google Scholar]
  20. Palecek S. P., Loftus J. C., Ginsberg M. H., Lauffenburger D. A., Horwitz A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997 Feb 6;385(6616):537–540. doi: 10.1038/385537a0. [DOI] [PubMed] [Google Scholar]
  21. Pfaff M., Liu S., Erle D. J., Ginsberg M. H. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. J Biol Chem. 1998 Mar 13;273(11):6104–6109. doi: 10.1074/jbc.273.11.6104. [DOI] [PubMed] [Google Scholar]
  22. Ponting C. P. SAM: a novel motif in yeast sterile and Drosophila polyhomeotic proteins. Protein Sci. 1995 Sep;4(9):1928–1930. doi: 10.1002/pro.5560040927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schneller M., Vuori K., Ruoslahti E. Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J. 1997 Sep 15;16(18):5600–5607. doi: 10.1093/emboj/16.18.5600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Singhvi R., Kumar A., Lopez G. P., Stephanopoulos G. N., Wang D. I., Whitesides G. M., Ingber D. E. Engineering cell shape and function. Science. 1994 Apr 29;264(5159):696–698. doi: 10.1126/science.8171320. [DOI] [PubMed] [Google Scholar]
  26. Songyang Z., Fanning A. S., Fu C., Xu J., Marfatia S. M., Chishti A. H., Crompton A., Chan A. C., Anderson J. M., Cantley L. C. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 1997 Jan 3;275(5296):73–77. doi: 10.1126/science.275.5296.73. [DOI] [PubMed] [Google Scholar]
  27. Stein E., Cerretti D. P., Daniel T. O. Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J Biol Chem. 1996 Sep 20;271(38):23588–23593. doi: 10.1074/jbc.271.38.23588. [DOI] [PubMed] [Google Scholar]
  28. Stein E., Huynh-Do U., Lane A. A., Cerretti D. P., Daniel T. O. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J Biol Chem. 1998 Jan 16;273(3):1303–1308. doi: 10.1074/jbc.273.3.1303. [DOI] [PubMed] [Google Scholar]
  29. Stein E., Lane A. A., Cerretti D. P., Schoecklmann H. O., Schroff A. D., Van Etten R. L., Daniel T. O. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998 Mar 1;12(5):667–678. doi: 10.1101/gad.12.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suehiro K., Gailit J., Plow E. F. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem. 1997 Feb 21;272(8):5360–5366. doi: 10.1074/jbc.272.8.5360. [DOI] [PubMed] [Google Scholar]
  31. Thanos C. D., Goodwill K. E., Bowie J. U. Oligomeric structure of the human EphB2 receptor SAM domain. Science. 1999 Feb 5;283(5403):833–836. doi: 10.1126/science.283.5403.833. [DOI] [PubMed] [Google Scholar]
  32. Wang H. U., Anderson D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron. 1997 Mar;18(3):383–396. doi: 10.1016/s0896-6273(00)81240-4. [DOI] [PubMed] [Google Scholar]
  33. Wang H. U., Chen Z. F., Anderson D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998 May 29;93(5):741–753. doi: 10.1016/s0092-8674(00)81436-1. [DOI] [PubMed] [Google Scholar]
  34. Woodard A. S., García-Cardeña G., Leong M., Madri J. A., Sessa W. C., Languino L. R. The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci. 1998 Feb;111(Pt 4):469–478. doi: 10.1242/jcs.111.4.469. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES