Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 May 4;18(9):2342–2351. doi: 10.1093/emboj/18.9.2342

Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae.

C Kündig 1, A Haimeur 1, D Légaré 1, B Papadopoulou 1, M Ouellette 1
PMCID: PMC1171317  PMID: 10228149

Abstract

Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G-green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX-resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate-rich medium, to increased folate uptake. MTX-resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX.

Full Text

The Full Text of this article is available as a PDF (365.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrebola R., Olmo A., Reche P., Garvey E. P., Santi D. V., Ruiz-Perez L. M., Gonzalez-Pacanowska D. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994 Apr 8;269(14):10590–10596. [PubMed] [Google Scholar]
  2. Beck J. T., Ullman B. Biopterin conversion to reduced folates by Leishmania donovani promastigotes. Mol Biochem Parasitol. 1991 Nov;49(1):21–28. doi: 10.1016/0166-6851(91)90126-q. [DOI] [PubMed] [Google Scholar]
  3. Beck J. T., Ullman B. Nutritional requirements of wild-type and folate transport-deficient Leishmania donovani for pterins and folates. Mol Biochem Parasitol. 1990 Dec;43(2):221–230. doi: 10.1016/0166-6851(90)90147-e. [DOI] [PubMed] [Google Scholar]
  4. Bello A. R., Nare B., Freedman D., Hardy L., Beverley S. M. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11442–11446. doi: 10.1073/pnas.91.24.11442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beverley S. M. Gene amplification in Leishmania. Annu Rev Microbiol. 1991;45:417–444. doi: 10.1146/annurev.mi.45.100191.002221. [DOI] [PubMed] [Google Scholar]
  6. Borst P., Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–460. doi: 10.1146/annurev.mi.49.100195.002235. [DOI] [PubMed] [Google Scholar]
  7. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  8. Callahan H. L., Beverley S. M. A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem. 1992 Dec 5;267(34):24165–24168. [PubMed] [Google Scholar]
  9. Coderre J. A., Beverley S. M., Schimke R. T., Santi D. V. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2132–2136. doi: 10.1073/pnas.80.8.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dewes H., Ostergaard H. L., Simpson L. Impaired drug uptake in methotrexate resistant Crithidia fasciculata without changes in dihydrofolate reductase activity or gene amplification. Mol Biochem Parasitol. 1986 May;19(2):149–161. doi: 10.1016/0166-6851(86)90120-9. [DOI] [PubMed] [Google Scholar]
  11. Dey S., Papadopoulou B., Haimeur A., Roy G., Grondin K., Dou D., Rosen B. P., Ouellette M. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994 Sep;67(1):49–57. doi: 10.1016/0166-6851(94)90095-7. [DOI] [PubMed] [Google Scholar]
  12. Ellenberger T. E., Beverley S. M. Biochemistry and regulation of folate and methotrexate transport in Leishmania major. J Biol Chem. 1987 Jul 25;262(21):10053–10058. [PubMed] [Google Scholar]
  13. Ellenberger T. E., Beverley S. M. Reductions in methotrexate and folate influx in methotrexate-resistant lines of Leishmania major are independent of R or H region amplification. J Biol Chem. 1987 Oct 5;262(28):13501–13506. [PubMed] [Google Scholar]
  14. Ellenberger T. E., Wright J. E., Rosowsky A., Beverley S. M. Wild-type and drug-resistant Leishmania major hydrolyze methotrexate to N-10-methyl-4-deoxy-4-aminopteroate without accumulation of methotrexate polyglutamates. J Biol Chem. 1989 Sep 25;264(27):15960–15966. [PubMed] [Google Scholar]
  15. Gamarro F., Chiquero M. J., Amador M. V., Légaré D., Ouellette M., Castanys S. P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochem Pharmacol. 1994 Jun 1;47(11):1939–1947. doi: 10.1016/0006-2952(94)90067-1. [DOI] [PubMed] [Google Scholar]
  16. Gorlick R., Goker E., Trippett T., Waltham M., Banerjee D., Bertino J. R. Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med. 1996 Oct 3;335(14):1041–1048. doi: 10.1056/NEJM199610033351408. [DOI] [PubMed] [Google Scholar]
  17. Gottesdiener K. M. A new VSG expression site-associated gene (ESAG) in the promoter region of Trypanosoma brucei encodes a protein with 10 potential transmembrane domains. Mol Biochem Parasitol. 1994 Jan;63(1):143–151. doi: 10.1016/0166-6851(94)90017-5. [DOI] [PubMed] [Google Scholar]
  18. Grondin K., Roy G., Ouellette M. Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae. Mol Cell Biol. 1996 Jul;16(7):3587–3595. doi: 10.1128/mcb.16.7.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gueiros-Filho F. J., Beverley S. M. Selection against the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus as a probe of genetic alterations in Leishmania major. Mol Cell Biol. 1996 Oct;16(10):5655–5663. doi: 10.1128/mcb.16.10.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaur K., Coons T., Emmett K., Ullman B. Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J Biol Chem. 1988 May 25;263(15):7020–7028. [PubMed] [Google Scholar]
  21. Kovacs J. A., Allegra C. J., Beaver J., Boarman D., Lewis M., Parrillo J. E., Chabner B., Masur H. Characterization of de novo folate synthesis in Pneumocystis carinii and Toxoplasma gondii: potential for screening therapeutic agents. J Infect Dis. 1989 Aug;160(2):312–320. doi: 10.1093/infdis/160.2.312. [DOI] [PubMed] [Google Scholar]
  22. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  23. Lodes M. J., Merlin G., deVos T., Ghosh A., Madhubala R., Myler P. J., Stuart K. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus. Mol Cell Biol. 1995 Dec;15(12):6845–6853. doi: 10.1128/mcb.15.12.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Myler P. J., Lodes M. J., Merlin G., de Vos T., Stuart K. D. An amplified DNA element in Leishmania encodes potential integral membrane and nucleotide-binding proteins. Mol Biochem Parasitol. 1994 Jul;66(1):11–20. doi: 10.1016/0166-6851(94)90031-0. [DOI] [PubMed] [Google Scholar]
  25. Nare B., Luba J., Hardy L. W., Beverley S. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology. 1997;114 (Suppl):S101–S110. [PubMed] [Google Scholar]
  26. Oe H., Kohashi M., Iwai K. Radioassay of the folate-hydrolyzing enzyme activity, and the distribution of the enzyme in biological cells and tissues. J Nutr Sci Vitaminol (Tokyo) 1983 Oct;29(5):523–531. doi: 10.3177/jnsv.29.523. [DOI] [PubMed] [Google Scholar]
  27. Papadopoulou B., Kündig C., Singh A., Ouellette M. Drug resistance in Leishmania: similarities and differences to other organisms. Drug Resist Updat. 1998;1(4):266–278. doi: 10.1016/s1368-7646(98)80007-1. [DOI] [PubMed] [Google Scholar]
  28. Papadopoulou B., Ouellette M. Frequent amplification of a short chain dehydrogenase gene in methotrexate resistant Leishmania. Adv Exp Med Biol. 1993;338:559–562. doi: 10.1007/978-1-4615-2960-6_114. [DOI] [PubMed] [Google Scholar]
  29. Papadopoulou B., Roy G., Mourad W., Leblanc E., Ouellette M. Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem. 1994 Mar 11;269(10):7310–7315. [PubMed] [Google Scholar]
  30. Papadopoulou B., Roy G., Ouellette M. A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO J. 1992 Oct;11(10):3601–3608. doi: 10.1002/j.1460-2075.1992.tb05444.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Papadopoulou B., Roy G., Ouellette M. Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Mol Biochem Parasitol. 1994 May;65(1):39–49. doi: 10.1016/0166-6851(94)90113-9. [DOI] [PubMed] [Google Scholar]
  32. Papadopoulou B., Roy G., Ouellette M. Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. Nucleic Acids Res. 1993 Sep 11;21(18):4305–4312. doi: 10.1093/nar/21.18.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peixoto M. P., Beverley S. M. In vitro activity of sulfonamides and sulfones against Leishmania major promastigotes. Antimicrob Agents Chemother. 1987 Oct;31(10):1575–1578. doi: 10.1128/aac.31.10.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Piper R. C., Xu X., Russell D. G., Little B. M., Landfear S. M. Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain. J Cell Biol. 1995 Feb;128(4):499–508. doi: 10.1083/jcb.128.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rudenko G., Chung H. M., Pham V. P., Van der Ploeg L. H. RNA polymerase I can mediate expression of CAT and neo protein-coding genes in Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3387–3397. doi: 10.1002/j.1460-2075.1991.tb04903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ryan K. A., Dasgupta S., Beverley S. M. Shuttle cosmid vectors for the trypanosomatid parasite Leishmania. Gene. 1993 Sep 6;131(1):145–150. doi: 10.1016/0378-1119(93)90684-u. [DOI] [PubMed] [Google Scholar]
  37. Schweitzer B. I., Dicker A. P., Bertino J. R. Dihydrofolate reductase as a therapeutic target. FASEB J. 1990 May;4(8):2441–2452. doi: 10.1096/fasebj.4.8.2185970. [DOI] [PubMed] [Google Scholar]
  38. Scott D. A., Coombs G. H., Sanderson B. E. Effects of methotrexate and other antifolates on the growth and dihydrofolate reductase activity of Leishmania promastigotes. Biochem Pharmacol. 1987 Jun 15;36(12):2043–2045. doi: 10.1016/0006-2952(87)90508-9. [DOI] [PubMed] [Google Scholar]
  39. Segovia M., Ortiz G. LD1 amplifications in Leishmania. Parasitol Today. 1997 Sep;13(9):342–348. doi: 10.1016/s0169-4758(97)01111-3. [DOI] [PubMed] [Google Scholar]
  40. Singer S. J. The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol. 1990;6:247–296. doi: 10.1146/annurev.cb.06.110190.001335. [DOI] [PubMed] [Google Scholar]
  41. Stuart K. D. Circular and linear multicopy DNAs in Leishmania. Parasitol Today. 1991 Jul;7(7):158–159. doi: 10.1016/0169-4758(91)90119-9. [DOI] [PubMed] [Google Scholar]
  42. Trager W. Pteridine requirement of the hemoflagellate Leishmania tarentolae. J Protozool. 1969 May;16(2):372–375. doi: 10.1111/j.1550-7408.1969.tb02284.x. [DOI] [PubMed] [Google Scholar]
  43. Wang J., Leblanc E., Chang C. F., Papadopoulou B., Bray T., Whiteley J. M., Lin S. X., Ouellette M. Pterin and folate reduction by the Leishmania tarentolae H locus short-chain dehydrogenase/reductase PTR1. Arch Biochem Biophys. 1997 Jun 15;342(2):197–202. doi: 10.1006/abbi.1997.0126. [DOI] [PubMed] [Google Scholar]
  44. Webster P., Russell D. G. The flagellar pocket of trypanosomatids. Parasitol Today. 1993 Jun;9(6):201–206. doi: 10.1016/0169-4758(93)90008-4. [DOI] [PubMed] [Google Scholar]
  45. White T. C., Fase-Fowler F., van Luenen H., Calafat J., Borst P. The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. J Biol Chem. 1988 Nov 15;263(32):16977–16983. [PubMed] [Google Scholar]
  46. Zhao R., Assaraf Y. G., Goldman I. D. A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate, and an obligatory anion requirement for transport function. J Biol Chem. 1998 Jul 24;273(30):19065–19071. doi: 10.1074/jbc.273.30.19065. [DOI] [PubMed] [Google Scholar]
  47. Zomerdijk J. C., Kieft R., Borst P. Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature. 1991 Oct 24;353(6346):772–775. doi: 10.1038/353772a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES