Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 May 4;18(9):2394–2400. doi: 10.1093/emboj/18.9.2394

An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus.

E J Kamsteeg 1, T A Wormhoudt 1, J P Rijss 1, C H van Os 1, P M Deen 1
PMCID: PMC1171322  PMID: 10228154

Abstract

Autosomal recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, are caused by mutations in the aquaporin-2 (AQP2) gene. Missense AQP2 proteins in recessive NDI have been shown to be retarded in the endoplasmic reticulum, whereas AQP2-E258K, an AQP2 mutant in dominant NDI, was retained in the Golgi complex. In this study, we identified the molecular mechanisms underlying recessive and dominant NDI. Sucrose gradient centrifugation of rat and human kidney proteins and subsequent immunoblotting revealed that AQP2 forms homotetramers. When expressed in oocytes, wild-type AQP2 and AQP2-E258K also formed homotetramers, whereas AQP2-R187C, a mutant in recessive NDI, was expressed as a monomer. Upon co-injection, AQP2-E258K, but not AQP2-R187C, was able to heterotetramerize with wild-type AQP2. Since an AQP monomer is the functional unit and AQP2-E258K is a functional but misrouted water channel, heterotetramerization of AQP2-E258K with wild-type AQP2 and inhibition of further routing of this complex to the plasma membrane is the cause of dominant NDI. This case of NDI is the first example of a dominant disease in which the 'loss-of-function' phenotype is caused by an impaired routing rather than impaired function of the wild-type protein.

Full Text

The Full Text of this article is available as a PDF (192.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cosma M. P., Cardone M., Carlomagno F., Colantuoni V. Mutations in the extracellular domain cause RET loss of function by a dominant negative mechanism. Mol Cell Biol. 1998 Jun;18(6):3321–3329. doi: 10.1128/mcb.18.6.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deen P. M., Croes H., van Aubel R. A., Ginsel L. A., van Os C. H. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest. 1995 May;95(5):2291–2296. doi: 10.1172/JCI117920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deen P. M., Verdijk M. A., Knoers N. V., Wieringa B., Monnens L. A., van Os C. H., van Oost B. A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994 Apr 1;264(5155):92–95. doi: 10.1126/science.8140421. [DOI] [PubMed] [Google Scholar]
  4. Deen P. M., van Aubel R. A., van Lieburg A. F., van Os C. H. Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol. 1996 Jun;7(6):836–841. doi: 10.1681/ASN.V76836. [DOI] [PubMed] [Google Scholar]
  5. Ecelbarger C. A., Terris J., Frindt G., Echevarria M., Marples D., Nielsen S., Knepper M. A. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol. 1995 Nov;269(5 Pt 2):F663–F672. doi: 10.1152/ajprenal.1995.269.5.F663. [DOI] [PubMed] [Google Scholar]
  6. Glowatzki E., Fakler G., Brändle U., Rexhausen U., Zenner H. P., Ruppersberg J. P., Fakler B. Subunit-dependent assembly of inward-rectifier K+ channels. Proc Biol Sci. 1995 Aug 22;261(1361):251–261. doi: 10.1098/rspb.1995.0145. [DOI] [PubMed] [Google Scholar]
  7. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  8. Jung J. S., Preston G. M., Smith B. L., Guggino W. B., Agre P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem. 1994 May 20;269(20):14648–14654. [PubMed] [Google Scholar]
  9. Katsura T., Verbavatz J. M., Farinas J., Ma T., Ausiello D. A., Verkman A. S., Brown D. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7212–7216. doi: 10.1073/pnas.92.16.7212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. King L. S., Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–648. doi: 10.1146/annurev.ph.58.030196.003155. [DOI] [PubMed] [Google Scholar]
  11. Koiwai O., Aono S., Adachi Y., Kamisako T., Yasui Y., Nishizawa M., Sato H. Crigler-Najjar syndrome type II is inherited both as a dominant and as a recessive trait. Hum Mol Genet. 1996 May;5(5):645–647. doi: 10.1093/hmg/5.5.645. [DOI] [PubMed] [Google Scholar]
  12. Kopito R. R. ER quality control: the cytoplasmic connection. Cell. 1997 Feb 21;88(4):427–430. doi: 10.1016/s0092-8674(00)81881-4. [DOI] [PubMed] [Google Scholar]
  13. Kreis T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 1986 May;5(5):931–941. doi: 10.1002/j.1460-2075.1986.tb04306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. König N., Zampighi G. A., Butler P. J. Characterisation of the major intrinsic protein (MIP) from bovine lens fibre membranes by electron microscopy and hydrodynamics. J Mol Biol. 1997 Feb 7;265(5):590–602. doi: 10.1006/jmbi.1996.0763. [DOI] [PubMed] [Google Scholar]
  15. Le Maire M., Aggerbeck L. P., Monteilhet C., Andersen J. P., Møller J. V. The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards. Anal Biochem. 1986 May 1;154(2):525–535. doi: 10.1016/0003-2697(86)90025-4. [DOI] [PubMed] [Google Scholar]
  16. Li Y., Lacerda D. A., Warman M. L., Beier D. R., Yoshioka H., Ninomiya Y., Oxford J. T., Morris N. P., Andrikopoulos K., Ramirez F. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell. 1995 Feb 10;80(3):423–430. doi: 10.1016/0092-8674(95)90492-1. [DOI] [PubMed] [Google Scholar]
  17. Marples D., Knepper M. A., Christensen E. I., Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995 Sep;269(3 Pt 1):C655–C664. doi: 10.1152/ajpcell.1995.269.3.C655. [DOI] [PubMed] [Google Scholar]
  18. Mulders S. M., Bichet D. G., Rijss J. P., Kamsteeg E. J., Arthus M. F., Lonergan M., Fujiwara M., Morgan K., Leijendekker R., van der Sluijs P. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest. 1998 Jul 1;102(1):57–66. doi: 10.1172/JCI2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mulders S. M., Knoers N. V., Van Lieburg A. F., Monnens L. A., Leumann E., Wühl E., Schober E., Rijss J. P., Van Os C. H., Deen P. M. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol. 1997 Feb;8(2):242–248. doi: 10.1681/ASN.V82242. [DOI] [PubMed] [Google Scholar]
  20. Musil L. S., Goodenough D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993 Sep 24;74(6):1065–1077. doi: 10.1016/0092-8674(93)90728-9. [DOI] [PubMed] [Google Scholar]
  21. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nielsen S., Frør J., Knepper M. A. Renal aquaporins: key roles in water balance and water balance disorders. Curr Opin Nephrol Hypertens. 1998 Sep;7(5):509–516. doi: 10.1097/00041552-199809000-00005. [DOI] [PubMed] [Google Scholar]
  23. Preston G. M., Jung J. S., Guggino W. B., Agre P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem. 1993 Jan 5;268(1):17–20. [PubMed] [Google Scholar]
  24. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  25. Rosenthal W., Seibold A., Antaramian A., Lonergan M., Arthus M. F., Hendy G. N., Birnbaumer M., Bichet D. G. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 1992 Sep 17;359(6392):233–235. doi: 10.1038/359233a0. [DOI] [PubMed] [Google Scholar]
  26. Schnermann J., Chou C. L., Ma T., Traynor T., Knepper M. A., Verkman A. S. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9660–9664. doi: 10.1073/pnas.95.16.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seppen J., Steenken E., Lindhout D., Bosma P. J., Elferink R. P. A mutation which disrupts the hydrophobic core of the signal peptide of bilirubin UDP-glucuronosyltransferase, an endoplasmic reticulum membrane protein, causes Crigler-Najjar type II. FEBS Lett. 1996 Jul 29;390(3):294–298. doi: 10.1016/0014-5793(96)00677-1. [DOI] [PubMed] [Google Scholar]
  28. Shiels A., Bassnett S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet. 1996 Feb;12(2):212–215. doi: 10.1038/ng0296-212. [DOI] [PubMed] [Google Scholar]
  29. Smith B. L., Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem. 1991 Apr 5;266(10):6407–6415. [PubMed] [Google Scholar]
  30. Tamarappoo B. K., Verkman A. S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest. 1998 May 15;101(10):2257–2267. doi: 10.1172/JCI2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tatu U., Hammond C., Helenius A. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J. 1995 Apr 3;14(7):1340–1348. doi: 10.1002/j.1460-2075.1995.tb07120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Terris J., Ecelbarger C. A., Marples D., Knepper M. A., Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol. 1995 Dec;269(6 Pt 2):F775–F785. doi: 10.1152/ajprenal.1995.269.6.F775. [DOI] [PubMed] [Google Scholar]
  33. Tinker A., Jan Y. N., Jan L. Y. Regions responsible for the assembly of inwardly rectifying potassium channels. Cell. 1996 Nov 29;87(5):857–868. doi: 10.1016/s0092-8674(00)81993-5. [DOI] [PubMed] [Google Scholar]
  34. Verbavatz J. M., Brown D., Sabolić I., Valenti G., Ausiello D. A., Van Hoek A. N., Ma T., Verkman A. S. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol. 1993 Nov;123(3):605–618. doi: 10.1083/jcb.123.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Verkarre V., Fournet J. C., de Lonlay P., Gross-Morand M. S., Devillers M., Rahier J., Brunelle F., Robert J. J., Nihoul-Fékété C., Saudubray J. M. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest. 1998 Oct 1;102(7):1286–1291. doi: 10.1172/JCI4495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vikkula M., Mariman E. C., Lui V. C., Zhidkova N. I., Tiller G. E., Goldring M. B., van Beersum S. E., de Waal Malefijt M. C., van den Hoogen F. H., Ropers H. H. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell. 1995 Feb 10;80(3):431–437. doi: 10.1016/0092-8674(95)90493-x. [DOI] [PubMed] [Google Scholar]
  37. Walz T., Hirai T., Murata K., Heymann J. B., Mitsuoka K., Fujiyoshi Y., Smith B. L., Agre P., Engel A. The three-dimensional structure of aquaporin-1. Nature. 1997 Jun 5;387(6633):624–627. doi: 10.1038/42512. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]
  39. van Hoek A. N., Hom M. L., Luthjens L. H., de Jong M. D., Dempster J. A., van Os C. H. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem. 1991 Sep 5;266(25):16633–16635. [PubMed] [Google Scholar]
  40. van Lieburg A. F., Verdijk M. A., Knoers V. V., van Essen A. J., Proesmans W., Mallmann R., Monnens L. A., van Oost B. A., van Os C. H., Deen P. M. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet. 1994 Oct;55(4):648–652. [PMC free article] [PubMed] [Google Scholar]
  41. van den Ouweland A. M., Dreesen J. C., Verdijk M., Knoers N. V., Monnens L. A., Rocchi M., van Oost B. A. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat Genet. 1992 Oct;2(2):99–102. doi: 10.1038/ng1092-99. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES