Abstract
The post-translational attachment of biotin and lipoic acid to specific lysine residues displayed in protruding beta-turns in homologous biotinyl and lipoyl domains of their parent enzymes is catalysed by two different ligases. We have expressed in Escherichia coli a sub-gene encoding the biotinyl domain of E.coli acetyl-CoA carboxylase, and by a series of mutations converted the protein from the target for biotinylation to one for lipoylation, in vivo and in vitro. The biotinylating enzyme, biotinyl protein ligase (BPL), and the lipoylating enzyme, LplA, exhibited major differences in the recognition process. LplA accepted the highly conserved MKM motif that houses the target lysine residue in the biotinyl domain beta-turn, but was responsive to structural cues in the flanking beta-strands. BPL was much less sensitive to changes in these beta-strands, but could not biotinylate a lysine residue placed in the DKA motif characteristic of the lipoyl domain beta-turn. The presence of a further protruding thumb between the beta2 and beta3 strands in the wild-type biotinyl domain, which has no counterpart in the lipoyl domain, is sufficient to prevent aberrant lipoylation in E.coli. The structural basis of this discrimination contrasts with other forms of post-translational modification, where the sequence motif surrounding the target residue can be the principal determinant.
Full Text
The Full Text of this article is available as a PDF (403.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. T., Guest J. R. Isolation and characterization of lipoylated and unlipoylated domains of the E2p subunit of the pyruvate dehydrogenase complex of Escherichia coli. Biochem J. 1990 Oct 1;271(1):139–145. doi: 10.1042/bj2710139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambrose M. C., Perham R. N. Spin-label study of the mobility of enzyme-bound lipoic acid in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochem J. 1976 May 1;155(2):429–432. doi: 10.1042/bj1550429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Athappilly F. K., Hendrickson W. A. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure. 1995 Dec 15;3(12):1407–1419. doi: 10.1016/s0969-2126(01)00277-5. [DOI] [PubMed] [Google Scholar]
- Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
- Berg A., Smits O., de Kok A., Vervoort J. Sequential 1H and 15N nuclear magnetic resonance assignments and secondary structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. Evidence for high structural similarity with the lipoyl domain of the pyruvate dehydrogenase complex. Eur J Biochem. 1995 Nov 15;234(1):148–159. doi: 10.1111/j.1432-1033.1995.148_c.x. [DOI] [PubMed] [Google Scholar]
- Berg A., Vervoort J., de Kok A. Solution structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. J Mol Biol. 1996 Aug 23;261(3):432–442. doi: 10.1006/jmbi.1996.0474. [DOI] [PubMed] [Google Scholar]
- Berg A., Vervoort J., de Kok A. Three-dimensional structure in solution of the N-terminal lipoyl domain of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur J Biochem. 1997 Mar 1;244(2):352–360. doi: 10.1111/j.1432-1033.1997.00352.x. [DOI] [PubMed] [Google Scholar]
- Berg A., de Kok A. 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol Chem. 1997 Jul;378(7):617–634. [PubMed] [Google Scholar]
- Berg A., de Kok A., Vervoort J. Sequential 1H and 15N nuclear magnetic resonance assignments and secondary structure of the N-terminal lipoyl domain of the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur J Biochem. 1994 Apr 1;221(1):87–100. doi: 10.1111/j.1432-1033.1994.tb18717.x. [DOI] [PubMed] [Google Scholar]
- Brocklehurst S. M., Perham R. N. Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. Protein Sci. 1993 Apr;2(4):626–639. doi: 10.1002/pro.5560020413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen-Addad C., Pares S., Sieker L., Neuburger M., Douce R. The lipoamide arm in the glycine decarboxylase complex is not freely swinging. Nat Struct Biol. 1995 Jan;2(1):63–68. doi: 10.1038/nsb0195-63. [DOI] [PubMed] [Google Scholar]
- Cronan J. E., Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990 Jun 25;265(18):10327–10333. [PubMed] [Google Scholar]
- Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
- Dardel F., Davis A. L., Laue E. D., Perham R. N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1993 Feb 20;229(4):1037–1048. doi: 10.1006/jmbi.1993.1103. [DOI] [PubMed] [Google Scholar]
- Dardel F., Packman L. C., Perham R. N. Expression in Escherichia coli of a sub-gene encoding the lipoyl domain of the pyruvate dehydrogenase complex of Bacillus stearothermophilus. FEBS Lett. 1990 May 21;264(2):206–210. doi: 10.1016/0014-5793(90)80249-i. [DOI] [PubMed] [Google Scholar]
- Duval M., DeRose R. T., Job C., Faucher D., Douce R., Job D. The major biotinyl protein from Pisum sativum seeds covalently binds biotin at a novel site. Plant Mol Biol. 1994 Oct;26(1):265–273. doi: 10.1007/BF00039537. [DOI] [PubMed] [Google Scholar]
- Fujiwara K., Okamura-Ikeda K., Motokawa Y. Lipoylation of H-protein of the glycine cleavage system. The effect of site-directed mutagenesis of amino acid residues around the lipoyllysine residue on the lipoate attachment. FEBS Lett. 1991 Nov 18;293(1-2):115–118. doi: 10.1016/0014-5793(91)81164-4. [DOI] [PubMed] [Google Scholar]
- Fujiwara K., Okamura-Ikeda K., Motokawa Y. Lipoylation of acyltransferase components of alpha-ketoacid dehydrogenase complexes. J Biol Chem. 1996 May 31;271(22):12932–12936. doi: 10.1074/jbc.271.22.12932. [DOI] [PubMed] [Google Scholar]
- Fujiwara K., Okamura-Ikeda K., Motokawa Y. Purification and characterization of lipoyl-AMP:N epsilon-lysine lipoyltransferase from bovine liver mitochondria. J Biol Chem. 1994 Jun 17;269(24):16605–16609. [PubMed] [Google Scholar]
- Fujiwara K., Okamura K., Motokawa Y. Hydrogen carrier protein from chicken liver: purification, characterization, and role of its prosthetic group, lipolic acid, in the glycine cleavage reaction. Arch Biochem Biophys. 1979 Oct 15;197(2):454–462. doi: 10.1016/0003-9861(79)90267-4. [DOI] [PubMed] [Google Scholar]
- Grande H. J., Van Telgen H. J., Veeger C. Symmetry and asymmetry of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli as reflected by fluorescence and spin-label studies. Eur J Biochem. 1976 Dec 11;71(2):509–518. doi: 10.1111/j.1432-1033.1976.tb11139.x. [DOI] [PubMed] [Google Scholar]
- Green D. E., Morris T. W., Green J., Cronan J. E., Jr, Guest J. R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem J. 1995 Aug 1;309(Pt 3):853–862. doi: 10.1042/bj3090853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green J. D., Laue E. D., Perham R. N., Ali S. T., Guest J. R. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1995 Apr 28;248(2):328–343. doi: 10.1016/s0022-2836(95)80054-9. [DOI] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Howard M. J., Fuller C., Broadhurst R. W., Perham R. N., Tang J. G., Quinn J., Diamond A. G., Yeaman S. J. Three-dimensional structure of the major autoantigen in primary biliary cirrhosis. Gastroenterology. 1998 Jul;115(1):139–146. doi: 10.1016/s0016-5085(98)70375-0. [DOI] [PubMed] [Google Scholar]
- Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
- Jordan S. W., Cronan J. E., Jr A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem. 1997 Jul 18;272(29):17903–17906. doi: 10.1074/jbc.272.29.17903. [DOI] [PubMed] [Google Scholar]
- Kikuchi G., Hiraga K. The mitochondrial glycine cleavage system. Unique features of the glycine decarboxylation. Mol Cell Biochem. 1982 Jun 25;45(3):137–149. doi: 10.1007/BF00230082. [DOI] [PubMed] [Google Scholar]
- Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
- Leon-Del-Rio A., Gravel R. A. Sequence requirements for the biotinylation of carboxyl-terminal fragments of human propionyl-CoA carboxylase alpha subunit expressed in Escherichia coli. J Biol Chem. 1994 Sep 16;269(37):22964–22968. [PubMed] [Google Scholar]
- Morris T. W., Reed K. E., Cronan J. E., Jr Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem. 1994 Jun 10;269(23):16091–16100. [PubMed] [Google Scholar]
- Morris T. W., Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. J Bacteriol. 1995 Jan;177(1):1–10. doi: 10.1128/jb.177.1.1-10.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murtif V. L., Samols D. Mutagenesis affecting the carboxyl terminus of the biotinyl subunit of transcarboxylase. Effects on biotination. J Biol Chem. 1987 Aug 25;262(24):11813–11816. [PubMed] [Google Scholar]
- Packman L. C., Borges A., Perham R. N. Amino acid sequence analysis of the lipoyl and peripheral subunit-binding domains in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex from Bacillus stearothermophilus. Biochem J. 1988 May 15;252(1):79–86. doi: 10.1042/bj2520079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packman L. C., Hale G., Perham R. N. Repeating functional domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. EMBO J. 1984 Jun;3(6):1315–1319. doi: 10.1002/j.1460-2075.1984.tb01969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pares S., Cohen-Addad C., Sieker L., Neuburger M., Douce R. X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4850–4853. doi: 10.1073/pnas.91.11.4850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
- Perham R. N., Reche P. A. Swinging arms in multifunctional enzymes and the specificity of post-translational modification. Biochem Soc Trans. 1998 Aug;26(3):299–303. doi: 10.1042/bst0260299. [DOI] [PubMed] [Google Scholar]
- Quinn J., Diamond A. G., Masters A. K., Brookfield D. E., Wallis N. G., Yeaman S. J. Expression and lipoylation in Escherichia coli of the inner lipoyl domain of the E2 component of the human pyruvate dehydrogenase complex. Biochem J. 1993 Jan 1;289(Pt 1):81–85. doi: 10.1042/bj2890081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reche P., Li Y. L., Fuller C., Eichhorn K., Perham R. N. Selectivity of post-translational modification in biotinylated proteins: the carboxy carrier protein of the acetyl-CoA carboxylase of Escherichia coli. Biochem J. 1998 Feb 1;329(Pt 3):589–596. doi: 10.1042/bj3290589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed K. E., Cronan J. E., Jr Escherichia coli exports previously folded and biotinated protein domains. J Biol Chem. 1991 Jun 25;266(18):11425–11428. [PubMed] [Google Scholar]
- Reed L. J., Hackert M. L. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem. 1990 Jun 5;265(16):8971–8974. [PubMed] [Google Scholar]
- Ricaud P. M., Howard M. J., Roberts E. L., Broadhurst R. W., Perham R. N. Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1996 Nov 22;264(1):179–190. doi: 10.1006/jmbi.1996.0632. [DOI] [PubMed] [Google Scholar]
- Roberts E. L., Shu N., Howard M. J., Broadhurst R. W., Chapman-Smith A., Wallace J. C., Morris T., Cronan J. E., Jr, Perham R. N. Solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy. Biochemistry. 1999 Apr 20;38(16):5045–5053. doi: 10.1021/bi982466o. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
- Shenoy B. C., Paranjape S., Murtif V. L., Kumar G. K., Samols D., Wood H. G. Effect of mutations at Met-88 and Met-90 on the biotination of Lys-89 of the apo 1.3S subunit of transcarboxylase. FASEB J. 1988 Jun;2(9):2505–2511. doi: 10.1096/fasebj.2.9.3131174. [DOI] [PubMed] [Google Scholar]
- Wallis N. G., Perham R. N. Structural dependence of post-translational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1994 Feb 11;236(1):209–216. doi: 10.1006/jmbi.1994.1130. [DOI] [PubMed] [Google Scholar]
- Wilson K. P., Shewchuk L. M., Brennan R. G., Otsuka A. J., Matthews B. W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9257–9261. doi: 10.1073/pnas.89.19.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood H. G., Harmon F. R., Wühr B., Hübner K., Lynen F. Comparison of the biotination of apotranscarboxylase and its aposubunits. Is assembly essential for biotination? J Biol Chem. 1980 Aug 10;255(15):7397–7409. [PubMed] [Google Scholar]