Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 May 17;18(10):2746–2755. doi: 10.1093/emboj/18.10.2746

Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana.

S C Ilgoutz 1, J L Zawadzki 1, J E Ralton 1, M J McConville 1
PMCID: PMC1171356  PMID: 10329621

Abstract

The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.

Full Text

The Full Text of this article is available as a PDF (444.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright C. F., Orlean P., Robbins P. W. A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7366–7369. doi: 10.1073/pnas.86.19.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  3. Banerjee D. K. Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem. 1989 Feb 5;264(4):2024–2028. [PubMed] [Google Scholar]
  4. Bossuyt X., Blanckaert N. Topology of nucleotide-sugar:dolichyl phosphate glycosyltransferases involved in the dolichol pathway for protein glycosylation in native rat liver microsomes. Biochem J. 1993 Dec 15;296(Pt 3):627–632. doi: 10.1042/bj2960627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  6. Carver M. A., Turco S. J. Biosynthesis of lipophosphoglycan from Leishmania donovani: characterization of mannosylphosphate transfer in vitro. Arch Biochem Biophys. 1992 Jun;295(2):309–317. doi: 10.1016/0003-9861(92)90523-y. [DOI] [PubMed] [Google Scholar]
  7. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  8. Colussi P. A., Taron C. H., Mack J. C., Orlean P. Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7873–7878. doi: 10.1073/pnas.94.15.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cruz A. K., Titus R., Beverley S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1599–1603. doi: 10.1073/pnas.90.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doering T. L., Schekman R. GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J. 1996 Jan 2;15(1):182–191. [PMC free article] [PubMed] [Google Scholar]
  11. Dumas C., Ouellette M., Tovar J., Cunningham M. L., Fairlamb A. H., Tamar S., Olivier M., Papadopoulou B. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J. 1997 May 15;16(10):2590–2598. doi: 10.1093/emboj/16.10.2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  13. Ferguson M. A. The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci. 1997 Sep 29;352(1359):1295–1302. doi: 10.1098/rstb.1997.0113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Funk V. A., Jardim A., Olafson R. W. An investigation into the significance of the N-linked oligosaccharides of Leishmania gp63. Mol Biochem Parasitol. 1994 Jan;63(1):23–35. doi: 10.1016/0166-6851(94)90005-1. [DOI] [PubMed] [Google Scholar]
  15. Gentzsch M., Tanner W. The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J. 1996 Nov 1;15(21):5752–5759. [PMC free article] [PubMed] [Google Scholar]
  16. Ha D. S., Schwarz J. K., Turco S. J., Beverley S. M. Use of the green fluorescent protein as a marker in transfected Leishmania. Mol Biochem Parasitol. 1996 Apr;77(1):57–64. doi: 10.1016/0166-6851(96)02580-7. [DOI] [PubMed] [Google Scholar]
  17. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  18. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed] [Google Scholar]
  19. Ilg T., Harbecke D., Overath P. The lysosomal gp63-related protein in Leishmania mexicana amastigotes is a soluble metalloproteinase with an acidic pH optimum. FEBS Lett. 1993 Jul 19;327(1):103–107. doi: 10.1016/0014-5793(93)81049-6. [DOI] [PubMed] [Google Scholar]
  20. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kinoshita T., Takeda J. GPI-anchor synthesis. Parasitol Today. 1994 Apr;10(4):139–143. doi: 10.1016/0169-4758(94)90261-5. [DOI] [PubMed] [Google Scholar]
  22. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  23. LeBowitz J. H., Coburn C. M., McMahon-Pratt D., Beverley S. M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9736–9740. doi: 10.1073/pnas.87.24.9736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leidich S. D., Drapp D. A., Orlean P. A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem. 1994 Apr 8;269(14):10193–10196. [PubMed] [Google Scholar]
  25. Ma D., Russell D. G., Beverley S. M., Turco S. J. Golgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters. J Biol Chem. 1997 Feb 7;272(6):3799–3805. [PubMed] [Google Scholar]
  26. Mazhari-Tabrizi R., Eckert V., Blank M., Müller R., Mumberg D., Funk M., Schwarz R. T. Cloning and functional expression of glycosyltransferases from parasitic protozoans by heterologous complementation in yeast: the dolichol phosphate mannose synthase from Trypanosoma brucei brucei. Biochem J. 1996 Jun 15;316(Pt 3):853–858. doi: 10.1042/bj3160853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McConville M. J., Blackwell J. M. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem. 1991 Aug 15;266(23):15170–15179. [PubMed] [Google Scholar]
  28. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McConville M. J., Homans S. W. Identification of the defect in lipophosphoglycan biosynthesis in a non-pathogenic strain of Leishmania major. J Biol Chem. 1992 Mar 25;267(9):5855–5861. [PubMed] [Google Scholar]
  30. McGwire B. S., Chang K. P. Posttranslational regulation of a Leishmania HEXXH metalloprotease (gp63). The effects of site-specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem. 1996 Apr 5;271(14):7903–7909. doi: 10.1074/jbc.271.14.7903. [DOI] [PubMed] [Google Scholar]
  31. Medina-Acosta E., Cross G. A. Rapid isolation of DNA from trypanosomatid protozoa using a simple 'mini-prep' procedure. Mol Biochem Parasitol. 1993 Jun;59(2):327–329. doi: 10.1016/0166-6851(93)90231-l. [DOI] [PubMed] [Google Scholar]
  32. Mengeling B. J., Zilberstein D., Turco S. J. Biosynthesis of Leishmania lipophosphoglycan: solubilization and partial characterization of the initiating mannosylphosphoryltransferase. Glycobiology. 1997 Sep;7(6):847–853. doi: 10.1093/glycob/7.6.847. [DOI] [PubMed] [Google Scholar]
  33. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mensa-Wilmot K., LeBowitz J. H., Chang K. P., al-Qahtani A., McGwire B. S., Tucker S., Morris J. C. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: topography of two GPI pathways. J Cell Biol. 1994 Mar;124(6):935–947. doi: 10.1083/jcb.124.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moss J. M., Reid G. E., Mullin K. A., Zawadzki J. L., Simpson R. J., McConville M. J. Characterization of a novel GDP-mannose:Serine-protein mannose-1-phosphotransferase from Leishmania mexicana. J Biol Chem. 1999 Mar 5;274(10):6678–6688. doi: 10.1074/jbc.274.10.6678. [DOI] [PubMed] [Google Scholar]
  36. Mottram J. C., Souza A. E., Hutchison J. E., Carter R., Frame M. J., Coombs G. H. Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6008–6013. doi: 10.1073/pnas.93.12.6008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  38. Orlean P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):5796–5805. doi: 10.1128/mcb.10.11.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Parodi A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology. 1993 Jun;3(3):193–199. doi: 10.1093/glycob/3.3.193. [DOI] [PubMed] [Google Scholar]
  40. Ralton J. E., McConville M. J. Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem. 1998 Feb 13;273(7):4245–4257. doi: 10.1074/jbc.273.7.4245. [DOI] [PubMed] [Google Scholar]
  41. Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sevlever D., Humphrey D. R., Rosenberry T. L. Compositional analysis of glucosaminyl(acyl)phosphatidylinositol accumulated in HeLa S3 cells. Eur J Biochem. 1995 Oct 1;233(1):384–394. doi: 10.1111/j.1432-1033.1995.384_1.x. [DOI] [PubMed] [Google Scholar]
  43. Singh N., Liang L. N., Tykocinski M. L., Tartakoff A. M. A novel class of cell surface glycolipids of mammalian cells. Free glycosyl phosphatidylinositols. J Biol Chem. 1996 May 31;271(22):12879–12884. doi: 10.1074/jbc.271.22.12879. [DOI] [PubMed] [Google Scholar]
  44. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 1994 Jun 15;13(12):2789–2796. doi: 10.1002/j.1460-2075.1994.tb06572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Smith T. K., Sharma D. K., Crossman A., Dix A., Brimacombe J. S., Ferguson M. A. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J. 1997 Nov 17;16(22):6667–6675. doi: 10.1093/emboj/16.22.6667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sütterlin C., Horvath A., Gerold P., Schwarz R. T., Wang Y., Dreyfuss M., Riezman H. Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO J. 1997 Nov 3;16(21):6374–6383. doi: 10.1093/emboj/16.21.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tachado S. D., Gerold P., Schwarz R., Novakovic S., McConville M., Schofield L. Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4022–4027. doi: 10.1073/pnas.94.8.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Takahashi M., Inoue N., Ohishi K., Maeda Y., Nakamura N., Endo Y., Fujita T., Takeda J., Kinoshita T. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 1996 Aug 15;15(16):4254–4261. [PMC free article] [PubMed] [Google Scholar]
  50. Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
  51. Vidugiriene J., Menon A. K. Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer. J Cell Biol. 1993 Jun;121(5):987–996. doi: 10.1083/jcb.121.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vidugiriene J., Menon A. K. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol. 1994 Oct;127(2):333–341. doi: 10.1083/jcb.127.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Watanabe R., Kinoshita T., Masaki R., Yamamoto A., Takeda J., Inoue N. PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem. 1996 Oct 25;271(43):26868–26875. doi: 10.1074/jbc.271.43.26868. [DOI] [PubMed] [Google Scholar]
  54. Wiese M., Ilg T., Lottspeich F., Overath P. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. EMBO J. 1995 Mar 15;14(6):1067–1074. doi: 10.1002/j.1460-2075.1995.tb07089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Winter G., Fuchs M., McConville M. J., Stierhof Y. D., Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994 Sep;107(Pt 9):2471–2482. doi: 10.1242/jcs.107.9.2471. [DOI] [PubMed] [Google Scholar]
  56. de Nobel H., Lipke P. N. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 1994 Feb;4(2):42–45. doi: 10.1016/0962-8924(94)90003-5. [DOI] [PubMed] [Google Scholar]
  57. van't Hof W., Rodriguez-Boulan E., Menon A. K. Nonpolarized distribution of glycosylphosphatidylinositols in the plasma membrane of polarized Madin-Darby canine kidney cells. J Biol Chem. 1995 Oct 13;270(41):24150–24155. doi: 10.1074/jbc.270.41.24150. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES