Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 May 17;18(10):2793–2802. doi: 10.1093/emboj/18.10.2793

Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

B Blom 1, M H Heemskerk 1, M C Verschuren 1, J J van Dongen 1, A P Stegmann 1, A Q Bakker 1, F Couwenberg 1, P C Res 1, H Spits 1
PMCID: PMC1171360  PMID: 10329625

Abstract

Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint.

Full Text

The Full Text of this article is available as a PDF (348.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aifantis I., Azogui O., Feinberg J., Saint-Ruf C., Buer J., von Boehmer H. On the role of the pre-T cell receptor in alphabeta versus gammadelta T lineage commitment. Immunity. 1998 Nov;9(5):649–655. doi: 10.1016/s1074-7613(00)80662-7. [DOI] [PubMed] [Google Scholar]
  2. Bain G., Engel I., Robanus Maandag E. C., te Riele H. P., Voland J. R., Sharp L. L., Chun J., Huey B., Pinkel D., Murre C. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol. 1997 Aug;17(8):4782–4791. doi: 10.1128/mcb.17.8.4782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bain G., Maandag E. C., Izon D. J., Amsen D., Kruisbeek A. M., Weintraub B. C., Krop I., Schlissel M. S., Feeney A. J., van Roon M. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994 Dec 2;79(5):885–892. doi: 10.1016/0092-8674(94)90077-9. [DOI] [PubMed] [Google Scholar]
  4. Bain G., Robanus Maandag E. C., te Riele H. P., Feeney A. J., Sheehy A., Schlissel M., Shinton S. A., Hardy R. R., Murre C. Both E12 and E47 allow commitment to the B cell lineage. Immunity. 1997 Feb;6(2):145–154. doi: 10.1016/s1074-7613(00)80421-5. [DOI] [PubMed] [Google Scholar]
  5. Benezra R., Davis R. L., Lockshon D., Turner D. L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. doi: 10.1016/0092-8674(90)90214-y. [DOI] [PubMed] [Google Scholar]
  6. Blom B., Res P. C., Spits H. T cell precursors in man and mice. Crit Rev Immunol. 1998;18(4):371–388. doi: 10.1615/critrevimmunol.v18.i4.50. [DOI] [PubMed] [Google Scholar]
  7. Blom B., Res P., Noteboom E., Weijer K., Spits H. Prethymic CD34+ progenitors capable of developing into T cells are not committed to the T cell lineage. J Immunol. 1997 Apr 15;158(8):3571–3577. [PubMed] [Google Scholar]
  8. Breit T. M., Wolvers-Tettero I. L., Beishuizen A., Verhoeven M. A., van Wering E. R., van Dongen J. J. Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood. 1993 Nov 15;82(10):3063–3074. [PubMed] [Google Scholar]
  9. Breit T. M., Wolvers-Tettero I. L., Hählen K., van Wering E. R., van Dongen J. J. Extensive junctional diversity of gamma delta T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia. 1991 Dec;5(12):1076–1086. [PubMed] [Google Scholar]
  10. Capone M., Hockett R. D., Jr, Zlotnik A. Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12522–12527. doi: 10.1073/pnas.95.21.12522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christy B. A., Sanders L. K., Lau L. F., Copeland N. G., Jenkins N. A., Nathans D. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1815–1819. doi: 10.1073/pnas.88.5.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Church G. M., Ephrussi A., Gilbert W., Tonegawa S. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. 1985 Feb 28-Mar 6Nature. 313(6005):798–801. doi: 10.1038/313798a0. [DOI] [PubMed] [Google Scholar]
  13. Davies M. V., Kaufman R. J. The sequence context of the initiation codon in the encephalomyocarditis virus leader modulates efficiency of internal translation initiation. J Virol. 1992 Apr;66(4):1924–1932. doi: 10.1128/jvi.66.4.1924-1932.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Donskoy E., Goldschneider I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J Immunol. 1992 Mar 15;148(6):1604–1612. [PubMed] [Google Scholar]
  15. Ephrussi A., Church G. M., Tonegawa S., Gilbert W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985 Jan 11;227(4683):134–140. doi: 10.1126/science.3917574. [DOI] [PubMed] [Google Scholar]
  16. Fehling H. J., Krotkova A., Saint-Ruf C., von Boehmer H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature. 1995 Jun 29;375(6534):795–798. doi: 10.1038/375795a0. [DOI] [PubMed] [Google Scholar]
  17. Galy A., Verma S., Bárcena A., Spits H. Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J Exp Med. 1993 Aug 1;178(2):391–401. doi: 10.1084/jem.178.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Godfrey D. I., Zlotnik A. Control points in early T-cell development. Immunol Today. 1993 Nov;14(11):547–553. doi: 10.1016/0167-5699(93)90186-O. [DOI] [PubMed] [Google Scholar]
  19. Hanenberg H., Hashino K., Konishi H., Hock R. A., Kato I., Williams D. A. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther. 1997 Dec 10;8(18):2193–2206. doi: 10.1089/hum.1997.8.18-2193. [DOI] [PubMed] [Google Scholar]
  20. Hanenberg H., Xiao X. L., Dilloo D., Hashino K., Kato I., Williams D. A. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med. 1996 Aug;2(8):876–882. doi: 10.1038/nm0896-876. [DOI] [PubMed] [Google Scholar]
  21. Heemskerk M. H., Blom B., Nolan G., Stegmann A. P., Bakker A. Q., Weijer K., Res P. C., Spits H. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med. 1997 Nov 3;186(9):1597–1602. doi: 10.1084/jem.186.9.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jaleco A. C., Blom B., Res P., Weijer K., Lanier L. L., Phillips J. H., Spits H. Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. J Immunol. 1997 Jul 15;159(2):694–702. [PubMed] [Google Scholar]
  23. Kang J., Baker J., Raulet D. H. Evidence that productive rearrangements of TCR gamma genes influence the commitment of progenitor cells to differentiate into alpha beta or gamma delta T cells. Eur J Immunol. 1995 Sep;25(9):2706–2709. doi: 10.1002/eji.1830250946. [DOI] [PubMed] [Google Scholar]
  24. Kimizuka F., Taguchi Y., Ohdate Y., Kawase Y., Shimojo T., Hashino K., Kato I., Sekiguchi K., Titani K. Production and characterization of functional domains of human fibronectin expressed in Escherichia coli. J Biochem. 1991 Aug;110(2):284–291. doi: 10.1093/oxfordjournals.jbchem.a123572. [DOI] [PubMed] [Google Scholar]
  25. Kinsella T. M., Nolan G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther. 1996 Aug 1;7(12):1405–1413. doi: 10.1089/hum.1996.7.12-1405. [DOI] [PubMed] [Google Scholar]
  26. Kraft D. L., Weissman I. L., Waller E. K. Differentiation of CD3-4-8- human fetal thymocytes in vivo: characterization of a CD3-4+8- intermediate. J Exp Med. 1993 Jul 1;178(1):265–277. doi: 10.1084/jem.178.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krangel M. S., Yssel H., Brocklehurst C., Spits H. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J Exp Med. 1990 Sep 1;172(3):847–859. doi: 10.1084/jem.172.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Livak F., Petrie H. T., Crispe I. N., Schatz D. G. In-frame TCR delta gene rearrangements play a critical role in the alpha beta/gamma delta T cell lineage decision. Immunity. 1995 Jun;2(6):617–627. doi: 10.1016/1074-7613(95)90006-3. [DOI] [PubMed] [Google Scholar]
  29. Loveys D. A., Streiff M. B., Kato G. J. E2A basic-helix-loop-helix transcription factors are negatively regulated by serum growth factors and by the Id3 protein. Nucleic Acids Res. 1996 Jul 15;24(14):2813–2820. doi: 10.1093/nar/24.14.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Margolis D., Yassai M., Hletko A., McOlash L., Gorski J. Concurrent or sequential delta and beta TCR gene rearrangement during thymocyte development: individual thymi follow distinct pathways. J Immunol. 1997 Jul 15;159(2):529–533. [PubMed] [Google Scholar]
  31. Murre C., Bain G., van Dijk M. A., Engel I., Furnari B. A., Massari M. E., Matthews J. R., Quong M. W., Rivera R. R., Stuiver M. H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta. 1994 Jun 21;1218(2):129–135. doi: 10.1016/0167-4781(94)90001-9. [DOI] [PubMed] [Google Scholar]
  32. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  33. Márquez C., Trigueros C., Fernández E., Toribio M. L. The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differential expression of CD44. J Exp Med. 1995 Feb 1;181(2):475–483. doi: 10.1084/jem.181.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pestova T. V., Hellen C. U., Shatsky I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996 Dec;16(12):6859–6869. doi: 10.1128/mcb.16.12.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ramiro A. R., Trigueros C., Márquez C., San Millán J. L., Toribio M. L. Regulation of pre-T cell receptor (pT alpha-TCR beta) gene expression during human thymic development. J Exp Med. 1996 Aug 1;184(2):519–530. doi: 10.1084/jem.184.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Res P., Blom B., Hori T., Weijer K., Spits H. Downregulation of CD1 marks acquisition of functional maturation of human thymocytes and defines a control point in late stages of human T cell development. J Exp Med. 1997 Jan 6;185(1):141–151. doi: 10.1084/jem.185.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Res P., Martínez-Cáceres E., Cristina Jaleco A., Staal F., Noteboom E., Weijer K., Spits H. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood. 1996 Jun 15;87(12):5196–5206. [PubMed] [Google Scholar]
  38. Riechmann V., van Crüchten I., Sablitzky F. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucleic Acids Res. 1994 Mar 11;22(5):749–755. doi: 10.1093/nar/22.5.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sachs A. B., Sarnow P., Hentze M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997 Jun 13;89(6):831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
  40. Scollay R., Smith J., Stauffer V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol Rev. 1986 Jun;91:129–157. doi: 10.1111/j.1600-065x.1986.tb01487.x. [DOI] [PubMed] [Google Scholar]
  41. Shortman K., Wu L. Early T lymphocyte progenitors. Annu Rev Immunol. 1996;14:29–47. doi: 10.1146/annurev.immunol.14.1.29. [DOI] [PubMed] [Google Scholar]
  42. Sigvardsson M., O'Riordan M., Grosschedl R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity. 1997 Jul;7(1):25–36. doi: 10.1016/s1074-7613(00)80507-5. [DOI] [PubMed] [Google Scholar]
  43. Spits H., Blom B., Jaleco A. C., Weijer K., Verschuren M. C., van Dongen J. J., Heemskerk M. H., Res P. C. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev. 1998 Oct;165:75–86. doi: 10.1111/j.1600-065x.1998.tb01231.x. [DOI] [PubMed] [Google Scholar]
  44. Spits H., Lanier L. L., Phillips J. H. Development of human T and natural killer cells. Blood. 1995 May 15;85(10):2654–2670. [PubMed] [Google Scholar]
  45. Sun X. H., Copeland N. G., Jenkins N. A., Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991 Nov;11(11):5603–5611. doi: 10.1128/mcb.11.11.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sánchez M. J., Muench M. O., Roncarolo M. G., Lanier L. L., Phillips J. H. Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med. 1994 Aug 1;180(2):569–576. doi: 10.1084/jem.180.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sánchez M. J., Spits H., Lanier L. L., Phillips J. H. Human natural killer cell committed thymocytes and their relation to the T cell lineage. J Exp Med. 1993 Dec 1;178(6):1857–1866. doi: 10.1084/jem.178.6.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Verschuren M. C., Blom B., Bogers A. J., Spits H., van Dongen J. J. PJA-BP expression and TCR delta deletion during human T cell differentiation. Int Immunol. 1998 Dec;10(12):1873–1880. doi: 10.1093/intimm/10.12.1873. [DOI] [PubMed] [Google Scholar]
  49. Washburn T., Schweighoffer E., Gridley T., Chang D., Fowlkes B. J., Cado D., Robey E. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell. 1997 Mar 21;88(6):833–843. doi: 10.1016/s0092-8674(00)81929-7. [DOI] [PubMed] [Google Scholar]
  50. Yssel H., De Vries J. E., Koken M., Van Blitterswijk W., Spits H. Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods. 1984 Aug 3;72(1):219–227. doi: 10.1016/0022-1759(84)90450-2. [DOI] [PubMed] [Google Scholar]
  51. Zhuang Y., Cheng P., Weintraub H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol. 1996 Jun;16(6):2898–2905. doi: 10.1128/mcb.16.6.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhuang Y., Soriano P., Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994 Dec 2;79(5):875–884. doi: 10.1016/0092-8674(94)90076-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES