Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 1;18(11):2923–2929. doi: 10.1093/emboj/18.11.2923

The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain.

S Steinbacher 1, P Hof 1, L Eichinger 1, M Schleicher 1, J Gettemans 1, J Vandekerckhove 1, R Huber 1, J Benz 1
PMCID: PMC1171374  PMID: 10357805

Abstract

Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated by a novel type of protein kinase with no sequence homology to eukaryotic-type protein kinases. Here we present the crystal structure of the catalytic domain of the first cloned actin kinase in complex with AMP at 2.9 A resolution. The three-dimensional fold reveals a catalytic module of approximately 160 residues, in common with the eukaryotic protein kinase superfamily, which harbours the nucleotide binding site and the catalytic apparatus in an inter-lobe cleft. Several kinases that share this catalytic module differ in the overall architecture of their substrate recognition domain. The actin-fragmin kinase has acquired a unique flat substrate recognition domain which is supposed to confer stringent substrate specificity.

Full Text

The Full Text of this article is available as a PDF (353.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998 Jun 25;393(6687):805–809. doi: 10.1038/31729. [DOI] [PubMed] [Google Scholar]
  2. Bork P., Doolittle R. F. Drosophila kelch motif is derived from a common enzyme fold. J Mol Biol. 1994 Mar 11;236(5):1277–1282. doi: 10.1016/0022-2836(94)90056-6. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D., Engh R. A., Kinzel V., Ponstingl H., Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 1993 Mar;12(3):849–859. doi: 10.1002/j.1460-2075.1993.tb05725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Constantin B., Meerschaert K., Vandekerckhove J., Gettemans J. Disruption of the actin cytoskeleton of mammalian cells by the capping complex actin-fragmin is inhibited by actin phosphorylation and regulated by Ca2+ ions. J Cell Sci. 1998 Jun;111(Pt 12):1695–1706. doi: 10.1242/jcs.111.12.1695. [DOI] [PubMed] [Google Scholar]
  5. Cox S., Radzio-Andzelm E., Taylor S. S. Domain movements in protein kinases. Curr Opin Struct Biol. 1994 Dec;4(6):893–901. doi: 10.1016/0959-440x(94)90272-0. [DOI] [PubMed] [Google Scholar]
  6. De Corte V., Gettemans J., Waelkens E., Vandekerckhove J. In vivo phosphorylation of actin in Physarum polycephalum. Study of the substrate specificity of the actin-fragmin kinase. Eur J Biochem. 1996 Nov 1;241(3):901–908. doi: 10.1111/j.1432-1033.1996.00901.x. [DOI] [PubMed] [Google Scholar]
  7. Eby J. J., Holly S. P., van Drogen F., Grishin A. V., Peter M., Drubin D. G., Blumer K. J. Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr Biol. 1998 Aug 27;8(17):967–970. doi: 10.1016/s0960-9822(98)00398-4. [DOI] [PubMed] [Google Scholar]
  8. Eichinger L., Bomblies L., Vandekerckhove J., Schleicher M., Gettemans J. A novel type of protein kinase phosphorylates actin in the actin-fragmin complex. EMBO J. 1996 Oct 15;15(20):5547–5556. [PMC free article] [PubMed] [Google Scholar]
  9. Furuhashi K., Hatano S. A fragmin-like protein from plasmodium of Physarum polycephalum that severs F-actin and caps the barbed end of F-actin in a Ca2+-sensitive way. J Biochem. 1989 Aug;106(2):311–318. doi: 10.1093/oxfordjournals.jbchem.a122850. [DOI] [PubMed] [Google Scholar]
  10. Furuhashi K., Hatano S., Ando S., Nishizawa K., Inagaki M. Phosphorylation by actin kinase of the pointed end domain on the actin molecule. J Biol Chem. 1992 May 5;267(13):9326–9330. [PubMed] [Google Scholar]
  11. Gettemans J., De Ville Y., Vandekerckhove J., Waelkens E. Physarum actin is phosphorylated as the actin-fragmin complex at residues Thr203 and Thr202 by a specific 80 kDa kinase. EMBO J. 1992 Sep;11(9):3185–3191. doi: 10.1002/j.1460-2075.1992.tb05395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldberg J., Nairn A. C., Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell. 1996 Mar 22;84(6):875–887. doi: 10.1016/s0092-8674(00)81066-1. [DOI] [PubMed] [Google Scholar]
  13. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  14. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  15. Hon W. C., McKay G. A., Thompson P. R., Sweet R. M., Yang D. S., Wright G. D., Berghuis A. M. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell. 1997 Jun 13;89(6):887–895. doi: 10.1016/s0092-8674(00)80274-3. [DOI] [PubMed] [Google Scholar]
  16. Howard P. K., Sefton B. M., Firtel R. A. Tyrosine phosphorylation of actin in Dictyostelium associated with cell-shape changes. Science. 1993 Jan 8;259(5092):241–244. doi: 10.1126/science.7678470. [DOI] [PubMed] [Google Scholar]
  17. Hu S. H., Parker M. W., Lei J. Y., Wilce M. C., Benian G. M., Kemp B. E. Insights into autoregulation from the crystal structure of twitchin kinase. Nature. 1994 Jun 16;369(6481):581–584. doi: 10.1038/369581a0. [DOI] [PubMed] [Google Scholar]
  18. Johnson L. N., Lowe E. D., Noble M. E., Owen D. J. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett. 1998 Jun 23;430(1-2):1–11. doi: 10.1016/s0014-5793(98)00606-1. [DOI] [PubMed] [Google Scholar]
  19. Jungbluth A., Eckerskorn C., Gerisch G., Lottspeich F., Stocker S., Schweiger A. Stress-induced tyrosine phosphorylation of actin in Dictyostelium cells and localization of the phosphorylation site to tyrosine-53 adjacent to the DNase I binding loop. FEBS Lett. 1995 Nov 13;375(1-2):87–90. doi: 10.1016/0014-5793(95)01165-b. [DOI] [PubMed] [Google Scholar]
  20. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  21. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  22. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  23. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  24. Rao V. D., Misra S., Boronenkov I. V., Anderson R. A., Hurley J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998 Sep 18;94(6):829–839. doi: 10.1016/s0092-8674(00)81741-9. [DOI] [PubMed] [Google Scholar]
  25. Sheldrick G. M., Dauter Z., Wilson K. S., Hope H., Sieker L. C. The application of direct methods and Patterson interpretation to high-resolution native protein data. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):18–23. doi: 10.1107/S0907444992007364. [DOI] [PubMed] [Google Scholar]
  26. Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998 Jun 25;393(6687):809–812. doi: 10.1038/31735. [DOI] [PubMed] [Google Scholar]
  27. van Delft S., Verkleij A. J., Boonstra J., van Bergen en Henegouwen P. M. Epidermal growth factor induces serine phosphorylation of actin. FEBS Lett. 1995 Jan 9;357(3):251–254. doi: 10.1016/0014-5793(94)01359-9. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES