Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 1;18(11):2941–2949. doi: 10.1093/emboj/18.11.2941

Functional glycan-free adhesion domain of human cell surface receptor CD58: design, production and NMR studies.

Z Y Sun 1, V Dötsch 1, M Kim 1, J Li 1, E L Reinherz 1, G Wagner 1
PMCID: PMC1171376  PMID: 10357807

Abstract

A general strategy is presented here for producing glycan-free forms of glycoproteins without loss of function by employing apolar-to-polar mutations of surface residues in functionally irrelevant epitopes. The success of this structure-based approach was demonstrated through the expression in Escherichia coli of a soluble 11 kDa adhesion domain extracted from the heavily glycosylated 55 kDa human CD58 ectodomain. The solution structure was subsequently determined and binding to its counter-receptor CD2 studied by NMR. This mutant adhesion domain is functional as determined by several experimental methods, and the size of its binding site has been probed by chemical shift perturbations in NMR titration experiments. The new structural information supports a 'hand-shake' model of CD2-CD58 interaction involving the GFCC'C" faces of both CD2 and CD58 adhesion domains. The region responsible for binding specificity is most likely localized on the C, C' and C" strands and the C-C' and C'-C" loops on CD58.

Full Text

The Full Text of this article is available as a PDF (196.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arulanandam A. R., Kister A., McGregor M. J., Wyss D. F., Wagner G., Reinherz E. L. Interaction between human CD2 and CD58 involves the major beta sheet surface of each of their respective adhesion domains. J Exp Med. 1994 Nov 1;180(5):1861–1871. doi: 10.1084/jem.180.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arulanandam A. R., Moingeon P., Concino M. F., Recny M. A., Kato K., Yagita H., Koyasu S., Reinherz E. L. A soluble multimeric recombinant CD2 protein identifies CD48 as a low affinity ligand for human CD2: divergence of CD2 ligands during the evolution of humans and mice. J Exp Med. 1993 May 1;177(5):1439–1450. doi: 10.1084/jem.177.5.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arulanandam A. R., Withka J. M., Wyss D. F., Wagner G., Kister A., Pallai P., Recny M. A., Reinherz E. L. The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11613–11617. doi: 10.1073/pnas.90.24.11613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodian D. L., Jones E. Y., Harlos K., Stuart D. I., Davis S. J. Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution. Structure. 1994 Aug 15;2(8):755–766. doi: 10.1016/s0969-2126(94)00076-x. [DOI] [PubMed] [Google Scholar]
  5. Boussiotis V. A., Freeman G. J., Griffin J. D., Gray G. S., Gribben J. G., Nadler L. M. CD2 is involved in maintenance and reversal of human alloantigen-specific clonal anergy. J Exp Med. 1994 Nov 1;180(5):1665–1673. doi: 10.1084/jem.180.5.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis S. J., Ikemizu S., Wild M. K., van der Merwe P. A. CD2 and the nature of protein interactions mediating cell-cell recognition. Immunol Rev. 1998 Jun;163:217–236. doi: 10.1111/j.1600-065x.1998.tb01199.x. [DOI] [PubMed] [Google Scholar]
  7. Dengler T. J., Hoffmann J. C., Knolle P., Albert-Wolf M., Roux M., Wallich R., Meuer S. C. Structural and functional epitopes of the human adhesion receptor CD58 (LFA-3). Eur J Immunol. 1992 Nov;22(11):2809–2817. doi: 10.1002/eji.1830221109. [DOI] [PubMed] [Google Scholar]
  8. Dustin M. L., Sanders M. E., Shaw S., Springer T. A. Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med. 1987 Mar 1;165(3):677–692. doi: 10.1084/jem.165.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dustin M. L., Selvaraj P., Mattaliano R. J., Springer T. A. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. 1987 Oct 29-Nov 4Nature. 329(6142):846–848. doi: 10.1038/329846a0. [DOI] [PubMed] [Google Scholar]
  10. Fejzo J., Etzkorn F. A., Clubb R. T., Shi Y., Walsh C. T., Wagner G. The mutant Escherichia coli F112W cyclophilin binds cyclosporin A in nearly identical conformation as human cyclophilin. Biochemistry. 1994 May 17;33(19):5711–5720. doi: 10.1021/bi00185a007. [DOI] [PubMed] [Google Scholar]
  11. Gollob J. A., Li J., Kawasaki H., Daley J. F., Groves C., Reinherz E. L., Ritz J. Molecular interaction between CD58 and CD2 counter-receptors mediates the ability of monocytes to augment T cell activation by IL-12. J Immunol. 1996 Sep 1;157(5):1886–1893. [PubMed] [Google Scholar]
  12. Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
  13. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  14. Güntert P., Wüthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447–456. doi: 10.1007/BF02192866. [DOI] [PubMed] [Google Scholar]
  15. Hirahara H., Tsuchida M., Watanabe T., Haga M., Matsumoto Y., Abo T., Eguchi S. Long-term survival of cardiac allografts in rats treated before and after surgery with monoclonal antibody to CD2. Transplantation. 1995 Jan 15;59(1):85–90. doi: 10.1097/00007890-199501150-00015. [DOI] [PubMed] [Google Scholar]
  16. Jones E. Y., Davis S. J., Williams A. F., Harlos K., Stuart D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
  17. Kaplon R. J., Hochman P. S., Michler R. E., Kwiatkowski P. A., Edwards N. M., Berger C. L., Xu H., Meier W., Wallner B. P., Chisholm P. Short course single agent therapy with an LFA-3-IgG1 fusion protein prolongs primate cardiac allograft survival. Transplantation. 1996 Feb 15;61(3):356–363. doi: 10.1097/00007890-199602150-00004. [DOI] [PubMed] [Google Scholar]
  18. Koyasu S., Lawton T., Novick D., Recny M. A., Siliciano R. F., Wallner B. P., Reinherz E. L. Role of interaction of CD2 molecules with lymphocyte function-associated antigen 3 in T-cell recognition of nominal antigen. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2603–2607. doi: 10.1073/pnas.87.7.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  20. Matsuo H., Li H., McGuire A. M., Fletcher C. M., Gingras A. C., Sonenberg N., Wagner G. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol. 1997 Sep;4(9):717–724. doi: 10.1038/nsb0997-717. [DOI] [PubMed] [Google Scholar]
  21. McAlister M. S., Mott H. R., van der Merwe P. A., Campbell I. D., Davis S. J., Driscoll P. C. NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48. Biochemistry. 1996 May 14;35(19):5982–5991. doi: 10.1021/bi952756u. [DOI] [PubMed] [Google Scholar]
  22. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  23. Moingeon P., Chang H. C., Wallner B. P., Stebbins C., Frey A. Z., Reinherz E. L. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 1989 May 25;339(6222):312–314. doi: 10.1038/339312a0. [DOI] [PubMed] [Google Scholar]
  24. Neri D., Szyperski T., Otting G., Senn H., Wüthrich K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry. 1989 Sep 19;28(19):7510–7516. doi: 10.1021/bi00445a003. [DOI] [PubMed] [Google Scholar]
  25. Nieba L., Honegger A., Krebber C., Plückthun A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 1997 Apr;10(4):435–444. doi: 10.1093/protein/10.4.435. [DOI] [PubMed] [Google Scholar]
  26. Novotny J., Ganju R. K., Smiley S. T., Hussey R. E., Luther M. A., Recny M. A., Siliciano R. F., Reinherz E. L. A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8646–8650. doi: 10.1073/pnas.88.19.8646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osborn L., Day E. S., Miller G. T., Karpusas M., Tizard R., Meuer S. C., Hochman P. S. Amino acid residues required for binding of lymphocyte function-associated antigen 3 (CD58) to its counter-receptor CD2. J Exp Med. 1995 Jan 1;181(1):429–434. doi: 10.1084/jem.181.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Osborne M. J., Wallis R., Leung K. Y., Williams G., Lian L. Y., James R., Kleanthous C., Moore G. R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem J. 1997 May 1;323(Pt 3):823–831. doi: 10.1042/bj3230823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peterson A., Seed B. Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2). 1987 Oct 29-Nov 4Nature. 329(6142):842–846. doi: 10.1038/329842a0. [DOI] [PubMed] [Google Scholar]
  30. Plunkett M. L., Sanders M. E., Selvaraj P., Dustin M. L., Springer T. A. Rosetting of activated human T lymphocytes with autologous erythrocytes. Definition of the receptor and ligand molecules as CD2 and lymphocyte function-associated antigen 3 (LFA-3). J Exp Med. 1987 Mar 1;165(3):664–676. doi: 10.1084/jem.165.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Qin L., Chavin K. D., Lin J., Yagita H., Bromberg J. S. Anti-CD2 receptor and anti-CD2 ligand (CD48) antibodies synergize to prolong allograft survival. J Exp Med. 1994 Jan 1;179(1):341–346. doi: 10.1084/jem.179.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sayre P. H., Hussey R. E., Chang H. C., Ciardelli T. L., Reinherz E. L. Structural and binding analysis of a two domain extracellular CD2 molecule. J Exp Med. 1989 Mar 1;169(3):995–1009. doi: 10.1084/jem.169.3.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schraven B., Samstag Y., Altevogt P., Meuer S. C. Association of CD2 and CD45 on human T lymphocytes. Nature. 1990 May 3;345(6270):71–74. doi: 10.1038/345071a0. [DOI] [PubMed] [Google Scholar]
  34. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  35. Selvaraj P., Plunkett M. L., Dustin M., Sanders M. E., Shaw S., Springer T. A. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. 1987 Mar 26-Apr 1Nature. 326(6111):400–403. doi: 10.1038/326400a0. [DOI] [PubMed] [Google Scholar]
  36. Semnani R. T., Nutman T. B., Hochman P., Shaw S., van Seventer G. A. Costimulation by purified intercellular adhesion molecule 1 and lymphocyte function-associated antigen 3 induces distinct proliferation, cytokine and cell surface antigen profiles in human "naive" and "memory" CD4+ T cells. J Exp Med. 1994 Dec 1;180(6):2125–2135. doi: 10.1084/jem.180.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sido B., Otto G., Zimmermann R., Müller P., Meuer S. C., Dengler T. J. Modulation of the CD2 receptor and not disruption of the CD2/CD48 interaction is the principal action of CD2-mediated immunosuppression in the rat. Cell Immunol. 1997 Nov 25;182(1):57–67. doi: 10.1006/cimm.1997.1204. [DOI] [PubMed] [Google Scholar]
  38. Sido B., Otto G., Zimmermann R., Müller P., Meuer S., Dengler T. J. Prolonged allograft survival by the inhibition of costimulatory CD2 signals but not by modulation of CD48 (CD2 ligand) in the rat. Transpl Int. 1996;9 (Suppl 1):S323–S327. doi: 10.1007/978-3-662-00818-8_80. [DOI] [PubMed] [Google Scholar]
  39. Siliciano R. F., Pratt J. C., Schmidt R. E., Ritz J., Reinherz E. L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature. 1985 Oct 3;317(6036):428–430. doi: 10.1038/317428a0. [DOI] [PubMed] [Google Scholar]
  40. Somoza C., Driscoll P. C., Cyster J. G., Williams A. F. Mutational analysis of the CD2/CD58 interaction: the binding site for CD58 lies on one face of the first domain of human CD2. J Exp Med. 1993 Aug 1;178(2):549–558. doi: 10.1084/jem.178.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  42. Sultan P., Schechner J. S., McNiff J. M., Hochman P. S., Hughes C. C., Lorber M. I., Askenase P. W., Pober J. S. Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras. Nat Biotechnol. 1997 Aug;15(8):759–762. doi: 10.1038/nbt0897-759. [DOI] [PubMed] [Google Scholar]
  43. Teunissen M. B., Rongen H. A., Bos J. D. Function of adhesion molecules lymphocyte function-associated antigen-3 and intercellular adhesion molecule-1 on human epidermal Langerhans cells in antigen-specific T cell activation. J Immunol. 1994 Apr 1;152(7):3400–3409. [PubMed] [Google Scholar]
  44. Wallich R., Brenner C., Brand Y., Roux M., Reister M., Meuer S. Gene structure, promoter characterization, and basis for alternative mRNA splicing of the human CD58 gene. J Immunol. 1998 Mar 15;160(6):2862–2871. [PubMed] [Google Scholar]
  45. Wallner B. P., Frey A. Z., Tizard R., Mattaliano R. J., Hession C., Sanders M. E., Dustin M. L., Springer T. A. Primary structure of lymphocyte function-associated antigen 3 (LFA-3). The ligand of the T lymphocyte CD2 glycoprotein. J Exp Med. 1987 Oct 1;166(4):923–932. doi: 10.1084/jem.166.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Walters K. J., Dayie K. T., Reece R. J., Ptashne M., Wagner G. Structure and mobility of the PUT3 dimer. Nat Struct Biol. 1997 Sep;4(9):744–750. doi: 10.1038/nsb0997-744. [DOI] [PubMed] [Google Scholar]
  47. Wingren A. G., Parra E., Varga M., Kalland T., Sjögren H. O., Hedlund G., Dohlsten M. T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev Immunol. 1995;15(3-4):235–253. doi: 10.1615/critrevimmunol.v15.i3-4.30. [DOI] [PubMed] [Google Scholar]
  48. Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
  49. Withka J. M., Wyss D. F., Wagner G., Arulanandam A. R., Reinherz E. L., Recny M. A. Structure of the glycosylated adhesion domain of human T lymphocyte glycoprotein CD2. Structure. 1993 Sep 15;1(1):69–81. doi: 10.1016/0969-2126(93)90009-6. [DOI] [PubMed] [Google Scholar]
  50. Wong Y. W., Williams A. F., Kingsmore S. F., Seldin M. F. Structure, expression, and genetic linkage of the mouse BCM1 (OX45 or Blast-1) antigen. Evidence for genetic duplication giving rise to the BCM1 region on mouse chromosome 1 and the CD2/LFA3 region on mouse chromosome 3. J Exp Med. 1990 Jun 1;171(6):2115–2130. doi: 10.1084/jem.171.6.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wyss D. F., Choi J. S., Li J., Knoppers M. H., Willis K. J., Arulanandam A. R., Smolyar A., Reinherz E. L., Wagner G. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 1995 Sep 1;269(5228):1273–1278. doi: 10.1126/science.7544493. [DOI] [PubMed] [Google Scholar]
  52. van der Merwe P. A., Barclay A. N., Mason D. W., Davies E. A., Morgan B. P., Tone M., Krishnam A. K., Ianelli C., Davis S. J. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry. 1994 Aug 23;33(33):10149–10160. doi: 10.1021/bi00199a043. [DOI] [PubMed] [Google Scholar]
  53. van der Merwe P. A., Brown M. H., Davis S. J., Barclay A. N. Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48. EMBO J. 1993 Dec 15;12(13):4945–4954. doi: 10.1002/j.1460-2075.1993.tb06188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES