Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 1;18(11):2982–2990. doi: 10.1093/emboj/18.11.2982

Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.

S Cristóbal 1, J W de Gier 1, H Nielsen 1, G von Heijne 1
PMCID: PMC1171380  PMID: 10357811

Abstract

Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.

Full Text

The Full Text of this article is available as a PDF (342.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A., Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res. 1997 Jan 1;25(1):31–36. doi: 10.1093/nar/25.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berks B. C. A common export pathway for proteins binding complex redox cofactors? Mol Microbiol. 1996 Nov;22(3):393–404. doi: 10.1046/j.1365-2958.1996.00114.x. [DOI] [PubMed] [Google Scholar]
  3. Bernstein H. D. Membrane protein biogenesis: the exception explains the rules. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14587–14589. doi: 10.1073/pnas.95.25.14587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bibi E. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trends Biochem Sci. 1998 Feb;23(2):51–55. doi: 10.1016/s0968-0004(97)01134-1. [DOI] [PubMed] [Google Scholar]
  5. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem. 1998 Jul 17;273(29):18003–18006. doi: 10.1074/jbc.273.29.18003. [DOI] [PubMed] [Google Scholar]
  6. Bogsch E., Brink S., Robinson C. Pathway specificity for a delta pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein. EMBO J. 1997 Jul 1;16(13):3851–3859. doi: 10.1093/emboj/16.13.3851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brink S., Bogsch E. G., Edwards W. R., Hynds P. J., Robinson C. Targeting of thylakoid proteins by the delta pH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett. 1998 Sep 4;434(3):425–430. doi: 10.1016/s0014-5793(98)01028-x. [DOI] [PubMed] [Google Scholar]
  8. Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
  9. Chaddock A. M., Mant A., Karnauchov I., Brink S., Herrmann R. G., Klösgen R. B., Robinson C. A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J. 1995 Jun 15;14(12):2715–2722. doi: 10.1002/j.1460-2075.1995.tb07272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chanal A., Santini C., Wu L. Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli. Mol Microbiol. 1998 Nov;30(3):674–676. doi: 10.1046/j.1365-2958.1998.01095.x. [DOI] [PubMed] [Google Scholar]
  11. Dalbey R. E., Robinson C. Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem Sci. 1999 Jan;24(1):17–22. doi: 10.1016/s0968-0004(98)01333-4. [DOI] [PubMed] [Google Scholar]
  12. De Gier J. W., Valent Q. A., Von Heijne G., Luirink J. The E. coli SRP: preferences of a targeting factor. FEBS Lett. 1997 May 12;408(1):1–4. doi: 10.1016/s0014-5793(97)00402-x. [DOI] [PubMed] [Google Scholar]
  13. Doud S. K., Chou M. M., Kendall D. A. Titration of protein transport activity by incremental changes in signal peptide hydrophobicity. Biochemistry. 1993 Feb 9;32(5):1251–1256. doi: 10.1021/bi00056a008. [DOI] [PubMed] [Google Scholar]
  14. Driessen A. J. Bacterial protein translocation: kinetic and thermodynamic role of ATP and the protonmotive force. Trends Biochem Sci. 1992 Jun;17(6):219–223. doi: 10.1016/0968-0004(92)90381-i. [DOI] [PubMed] [Google Scholar]
  15. Guzman L. M., Belin D., Carson M. J., Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995 Jul;177(14):4121–4130. doi: 10.1128/jb.177.14.4121-4130.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mori H., Cline K. A signal peptide that directs non-Sec transport in bacteria also directs efficient and exclusive transport on the thylakoid Delta pH pathway. J Biol Chem. 1998 May 8;273(19):11405–11408. doi: 10.1074/jbc.273.19.11405. [DOI] [PubMed] [Google Scholar]
  18. Méjean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol. 1994 Mar;11(6):1169–1179. doi: 10.1111/j.1365-2958.1994.tb00393.x. [DOI] [PubMed] [Google Scholar]
  19. Nielsen H., Engelbrecht J., von Heijne G., Brunak S. Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins. 1996 Feb;24(2):165–177. doi: 10.1002/(SICI)1097-0134(199602)24:2<165::AID-PROT4>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  20. Nilsson I., von Heijne G. Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell. 1990 Sep 21;62(6):1135–1141. doi: 10.1016/0092-8674(90)90390-z. [DOI] [PubMed] [Google Scholar]
  21. Oliver D. B., Cabelli R. J., Dolan K. M., Jarosik G. P. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8227–8231. doi: 10.1073/pnas.87.21.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinson C., Hynds P. J., Robinson D., Mant A. Multiple pathways for the targeting of thylakoid proteins in chloroplasts. Plant Mol Biol. 1998 Sep;38(1-2):209–221. [PubMed] [Google Scholar]
  23. Santini C. L., Ize B., Chanal A., Müller M., Giordano G., Wu L. F. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J. 1998 Jan 2;17(1):101–112. doi: 10.1093/emboj/17.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 1998 Jul 1;17(13):3640–3650. doi: 10.1093/emboj/17.13.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990 Oct 25;18(20):6097–6100. doi: 10.1093/nar/18.20.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Settles A. M., Martienssen R. Old and new pathways of protein export in chloroplasts and bacteria. Trends Cell Biol. 1998 Dec;8(12):494–501. doi: 10.1016/s0962-8924(98)01387-7. [DOI] [PubMed] [Google Scholar]
  27. Settles A. M., Yonetani A., Baron A., Bush D. R., Cline K., Martienssen R. Sec-independent protein translocation by the maize Hcf106 protein. Science. 1997 Nov 21;278(5342):1467–1470. doi: 10.1126/science.278.5342.1467. [DOI] [PubMed] [Google Scholar]
  28. Traxler B., Murphy C. Insertion of the polytopic membrane protein MalF is dependent on the bacterial secretion machinery. J Biol Chem. 1996 May 24;271(21):12394–12400. doi: 10.1074/jbc.271.21.12394. [DOI] [PubMed] [Google Scholar]
  29. Weiner J. H., Bilous P. T., Shaw G. M., Lubitz S. P., Frost L., Thomas G. H., Cole J. A., Turner R. J. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell. 1998 Apr 3;93(1):93–101. doi: 10.1016/s0092-8674(00)81149-6. [DOI] [PubMed] [Google Scholar]
  30. Wexler M., Bogsch E. G., Klösgen R. B., Palmer T., Robinson C., Berks B. C. Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the delta pH pathway. FEBS Lett. 1998 Jul 24;431(3):339–342. doi: 10.1016/s0014-5793(98)00790-x. [DOI] [PubMed] [Google Scholar]
  31. Wolfe P. B., Rice M., Wickner W. Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. J Biol Chem. 1985 Feb 10;260(3):1836–1841. [PubMed] [Google Scholar]
  32. Wolfe P. B., Wickner W., Goodman J. M. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J Biol Chem. 1983 Oct 10;258(19):12073–12080. [PubMed] [Google Scholar]
  33. Yang Y. B., Yu N., Tai P. C. SecE-depleted membranes of Escherichia coli are active. SecE is not obligatorily required for the in vitro translocation of certain protein precursors. J Biol Chem. 1997 May 23;272(21):13660–13665. doi: 10.1074/jbc.272.21.13660. [DOI] [PubMed] [Google Scholar]
  34. de Gier J. W., Mansournia P., Valent Q. A., Phillips G. J., Luirink J., von Heijne G. Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett. 1996 Dec 16;399(3):307–309. doi: 10.1016/s0014-5793(96)01354-3. [DOI] [PubMed] [Google Scholar]
  35. de Gier J. W., Scotti P. A., Säf A., Valent Q. A., Kuhn A., Luirink J., von Heijne G. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14646–14651. doi: 10.1073/pnas.95.25.14646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. von Heijne G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature. 1989 Oct 5;341(6241):456–458. doi: 10.1038/341456a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES