Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 1;18(11):3133–3138. doi: 10.1093/emboj/18.11.3133

Basis for prokaryotic specificity of action of aminoglycoside antibiotics.

M I Recht 1, S Douthwaite 1, J D Puglisi 1
PMCID: PMC1171394  PMID: 10357824

Abstract

The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), which is an adenosine in prokaryotic ribosomes and a guanosine in eukaryotic ribosomes. Expression in E.coli of plasmid-encoded 16S rRNA containing an A1408 to G substitution confers resistance to a subclass of the aminoglycoside antibiotics that contain a 6' amino group on ring I. Chemical footprinting experiments indicate that resistance arises from the lower affinity of the drug for the eukaryotic rRNA sequence. The 1408G ribosomes are resistant to the same subclass of aminoglycosides as previously observed both for eukaryotic ribosomes and bacterial ribosomes containing a methylation at the N1 position of A1408. The results indicate that the identity of the nucleotide at position 1408 is a major determinant of specificity of aminoglycoside action, and agree with prior structural studies of aminoglycoside-rRNA complexes.

Full Text

The Full Text of this article is available as a PDF (224.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alangaden G. J., Kreiswirth B. N., Aouad A., Khetarpal M., Igno F. R., Moghazeh S. L., Manavathu E. K., Lerner S. A. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998 May;42(5):1295–1297. doi: 10.1128/aac.42.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  3. De Stasio E. A., Dahlberg A. E. Effects of mutagenesis of a conserved base-paired site near the decoding region of Escherichia coli 16 S ribosomal RNA. J Mol Biol. 1990 Mar 5;212(1):127–133. doi: 10.1016/0022-2836(90)90309-A. [DOI] [PubMed] [Google Scholar]
  4. De Stasio E. A., Moazed D., Noller H. F., Dahlberg A. E. Mutations in 16S ribosomal RNA disrupt antibiotic--RNA interactions. EMBO J. 1989 Apr;8(4):1213–1216. doi: 10.1002/j.1460-2075.1989.tb03494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edelmann P., Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. doi: 10.1016/0092-8674(77)90147-7. [DOI] [PubMed] [Google Scholar]
  6. Edlind T. D. Susceptibility of Giardia lamblia to aminoglycoside protein synthesis inhibitors: correlation with rRNA structure. Antimicrob Agents Chemother. 1989 Apr;33(4):484–488. doi: 10.1128/aac.33.4.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  8. Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hui A. S., Eaton D. H., de Boer H. A. Mutagenesis at the mRNA decoding site in the 16S ribosomal RNA using the specialized ribosome system in Escherichia coli. EMBO J. 1988 Dec 20;7(13):4383–4388. doi: 10.1002/j.1460-2075.1988.tb03337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johanson U., Hughes D. A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance. Nucleic Acids Res. 1995 Feb 11;23(3):464–466. doi: 10.1093/nar/23.3.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moazed D., Noller H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–394. doi: 10.1038/327389a0. [DOI] [PubMed] [Google Scholar]
  12. Palmer E., Wilhelm J. M. Mistranslation in a eucaryotic organism. Cell. 1978 Feb;13(2):329–334. doi: 10.1016/0092-8674(78)90201-5. [DOI] [PubMed] [Google Scholar]
  13. Powers T., Noller H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991 Aug;10(8):2203–2214. doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Powers T., Noller H. F. Allele-specific structure probing of plasmid-derived 16S ribosomal RNA from Escherichia coli. Gene. 1993 Jan 15;123(1):75–80. doi: 10.1016/0378-1119(93)90542-b. [DOI] [PubMed] [Google Scholar]
  15. Prammananan T., Sander P., Brown B. A., Frischkorn K., Onyi G. O., Zhang Y., Böttger E. C., Wallace R. J., Jr A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis. 1998 Jun;177(6):1573–1581. doi: 10.1086/515328. [DOI] [PubMed] [Google Scholar]
  16. Recht M. I., Douthwaite S., Dahlquist K. D., Puglisi J. D. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction. J Mol Biol. 1999 Feb 12;286(1):33–43. doi: 10.1006/jmbi.1998.2446. [DOI] [PubMed] [Google Scholar]
  17. Recht M. I., Fourmy D., Blanchard S. C., Dahlquist K. D., Puglisi J. D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol. 1996 Oct 4;262(4):421–436. doi: 10.1006/jmbi.1996.0526. [DOI] [PubMed] [Google Scholar]
  18. Sigmund C. D., Ettayebi M., Borden A., Morgan E. A. Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods Enzymol. 1988;164:673–690. doi: 10.1016/s0076-6879(88)64077-8. [DOI] [PubMed] [Google Scholar]
  19. Skeggs P. A., Thompson J., Cundliffe E. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol Gen Genet. 1985;200(3):415–421. doi: 10.1007/BF00425725. [DOI] [PubMed] [Google Scholar]
  20. Sparling P. F., Modolell J., Takeda Y., Davis B. D. Ribosomes from Escherichia coli merodiplods heterozygous for resistance to streptomycin and to spectinomycin. J Mol Biol. 1968 Nov 14;37(3):407–421. doi: 10.1016/0022-2836(68)90111-3. [DOI] [PubMed] [Google Scholar]
  21. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  22. Wilhelm J. M., Pettitt S. E., Jessop J. J. Aminoglycoside antibiotics and eukaryotic protein synthesis: structure--function relationships in the stimulation of misreading with a wheat embryo system. Biochemistry. 1978 Apr 4;17(7):1143–1149. doi: 10.1021/bi00600a001. [DOI] [PubMed] [Google Scholar]
  23. Woodcock J., Moazed D., Cannon M., Davies J., Noller H. F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 1991 Oct;10(10):3099–3103. doi: 10.1002/j.1460-2075.1991.tb07863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yoshizawa S., Fourmy D., Puglisi J. D. Structural origins of gentamicin antibiotic action. EMBO J. 1998 Nov 16;17(22):6437–6448. doi: 10.1093/emboj/17.22.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES