Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3484–3490. doi: 10.1093/emboj/18.12.3484

Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation.

M R Ehrenstein 1, M S Neuberger 1
PMCID: PMC1171427  PMID: 10369687

Abstract

During maturation of the immune response, IgM+ B cells switch to expression of one of the downstream isotypes (IgG, A or E). This class switching occurs by region-specific recombination within the IgH locus through an unknown mechanism. A lack of switch recombination in mice deficient in components of the DNA-dependent protein kinase (DNA-PK)-Ku complex has pointed to a role for non-homologous end joining. Here we characterize a switching defect in mice lacking a protein involved in DNA mismatch recognition. Mice deficient in Msh2 give diminished IgG (but not IgM) responses following challenge with both T cell-dependent and T cell-independent antigens. This appears to reflect a B cell-intrinsic defect since B cells from Msh2-deficient mice also exhibit impaired switching (but not blasting or proliferation) on in vitro culture with lipopolysaccharide. Furthermore, those switches that do occur in Msh2-deficient B cells reveal a shift in the distribution of recombination sites used: the breakpoints are more likely to occur in consensus motifs. These results, which intriguingly parallel the effects of Msh2 deficiency on hypermutation, suggest a role for Msh2 in the mechanics of class-switch recombination.

Full Text

The Full Text of this article is available as a PDF (475.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Chi N. W., Kolodner R. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev. 1995 Jan 15;9(2):234–247. doi: 10.1101/gad.9.2.234. [DOI] [PubMed] [Google Scholar]
  2. Alani E., Lee S., Kane M. F., Griffith J., Kolodner R. D. Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J Mol Biol. 1997 Jan 24;265(3):289–301. doi: 10.1006/jmbi.1996.0743. [DOI] [PubMed] [Google Scholar]
  3. Arakawa H., Iwasato T., Hayashida H., Shimizu A., Honjo T., Yamagishi H. The complete murine immunoglobulin class switch region of the alpha heavy chain gene-hierarchic repetitive structure and recombination breakpoints. J Biol Chem. 1993 Mar 5;268(7):4651–4655. [PubMed] [Google Scholar]
  4. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casellas R., Nussenzweig A., Wuerffel R., Pelanda R., Reichlin A., Suh H., Qin X. F., Besmer E., Kenter A., Rajewsky K. Ku80 is required for immunoglobulin isotype switching. EMBO J. 1998 Apr 15;17(8):2404–2411. doi: 10.1093/emboj/17.8.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Du J., Zhu Y., Shanmugam A., Kenter A. L. Analysis of immunoglobulin Sgamma3 recombination breakpoints by PCR: implications for the mechanism of isotype switching. Nucleic Acids Res. 1997 Aug 1;25(15):3066–3073. doi: 10.1093/nar/25.15.3066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunnick W., Hertz G. Z., Scappino L., Gritzmacher C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 1993 Feb 11;21(3):365–372. doi: 10.1093/nar/21.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrenstein M. R., O'Keefe T. L., Davies S. L., Neuberger M. S. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10089–10093. doi: 10.1073/pnas.95.17.10089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frey S., Bertocci B., Delbos F., Quint L., Weill J. C., Reynaud C. A. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Immunity. 1998 Jul;9(1):127–134. doi: 10.1016/s1074-7613(00)80594-4. [DOI] [PubMed] [Google Scholar]
  10. Jacobs H., Fukita Y., van der Horst G. T., de Boer J., Weeda G., Essers J., de Wind N., Engelward B. P., Samson L., Verbeek S. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice. J Exp Med. 1998 Jun 1;187(11):1735–1743. doi: 10.1084/jem.187.11.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kinoshita K., Tashiro J., Tomita S., Lee C. G., Honjo T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity. 1998 Dec;9(6):849–858. doi: 10.1016/s1074-7613(00)80650-0. [DOI] [PubMed] [Google Scholar]
  12. Kirkpatrick D. T., Petes T. D. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature. 1997 Jun 26;387(6636):929–931. doi: 10.1038/43225. [DOI] [PubMed] [Google Scholar]
  13. Lee C. G., Kondo S., Honjo T. Frequent but biased class switch recombination in the S mu flanking regions. Curr Biol. 1998 Feb 12;8(4):227–230. doi: 10.1016/s0960-9822(98)70087-9. [DOI] [PubMed] [Google Scholar]
  14. Lorenz M., Radbruch A. Developmental and molecular regulation of immunoglobulin class switch recombination. Curr Top Microbiol Immunol. 1996;217:151–169. doi: 10.1007/978-3-642-50140-1_11. [DOI] [PubMed] [Google Scholar]
  15. Manis J. P., Gu Y., Lansford R., Sonoda E., Ferrini R., Davidson L., Rajewsky K., Alt F. W. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J Exp Med. 1998 Jun 15;187(12):2081–2089. doi: 10.1084/jem.187.12.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milstein C., Neuberger M. S., Staden R. Both DNA strands of antibody genes are hypermutation targets. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8791–8794. doi: 10.1073/pnas.95.15.8791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mussmann R., Courtet M., Schwager J., Du Pasquier L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur J Immunol. 1997 Oct;27(10):2610–2619. doi: 10.1002/eji.1830271021. [DOI] [PubMed] [Google Scholar]
  18. O'Keefe T. L., Williams G. T., Davies S. L., Neuberger M. S. Mice carrying a CD20 gene disruption. Immunogenetics. 1998 Jul;48(2):125–132. doi: 10.1007/s002510050412. [DOI] [PubMed] [Google Scholar]
  19. Pâques F., Haber J. E. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Nov;17(11):6765–6771. doi: 10.1128/mcb.17.11.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Qiu G., Harriman G. R., Stavnezer J. Ialpha exon-replacement mice synthesize a spliced HPRT-C(alpha) transcript which may explain their ability to switch to IgA. Inhibition of switching to IgG in these mice. Int Immunol. 1999 Jan;11(1):37–46. doi: 10.1093/intimm/11.1.37. [DOI] [PubMed] [Google Scholar]
  21. Rada C., Ehrenstein M. R., Neuberger M. S., Milstein C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity. 1998 Jul;9(1):135–141. doi: 10.1016/s1074-7613(00)80595-6. [DOI] [PubMed] [Google Scholar]
  22. Rogozin I. B., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992 Nov 15;1171(1):11–18. doi: 10.1016/0167-4781(92)90134-l. [DOI] [PubMed] [Google Scholar]
  23. Rolink A., Melchers F., Andersson J. The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity. 1996 Oct;5(4):319–330. doi: 10.1016/s1074-7613(00)80258-7. [DOI] [PubMed] [Google Scholar]
  24. Sale J. E., Neuberger M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity. 1998 Dec;9(6):859–869. doi: 10.1016/s1074-7613(00)80651-2. [DOI] [PubMed] [Google Scholar]
  25. Saparbaev M., Prakash L., Prakash S. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Mar;142(3):727–736. doi: 10.1093/genetics/142.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stavnezer J. Antibody class switching. Adv Immunol. 1996;61:79–146. doi: 10.1016/s0065-2776(08)60866-4. [DOI] [PubMed] [Google Scholar]
  27. Sugawara N., Pâques F., Colaiácovo M., Haber J. E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9214–9219. doi: 10.1073/pnas.94.17.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vora K. A., Tumas-Brundage K. M., Lentz V. M., Cranston A., Fishel R., Manser T. Severe attenuation of the B cell immune response in Msh2-deficient mice. J Exp Med. 1999 Feb 1;189(3):471–482. doi: 10.1084/jem.189.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winter D. B., Phung Q. H., Umar A., Baker S. M., Tarone R. E., Tanaka K., Liskay R. M., Kunkel T. A., Bohr V. A., Gearhart P. J. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6953–6958. doi: 10.1073/pnas.95.12.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wuerffel R. A., Du J., Thompson R. J., Kenter A. L. Ig Sgamma3 DNA-specifc double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J Immunol. 1997 Nov 1;159(9):4139–4144. [PubMed] [Google Scholar]
  31. de Wind N., Dekker M., Berns A., Radman M., te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995 Jul 28;82(2):321–330. doi: 10.1016/0092-8674(95)90319-4. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES