Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3491–3501. doi: 10.1093/emboj/18.12.3491

Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity.

C Masutani 1, M Araki 1, A Yamada 1, R Kusumoto 1, T Nogimori 1, T Maekawa 1, S Iwai 1, F Hanaoka 1
PMCID: PMC1171428  PMID: 10369688

Abstract

Xeroderma pigmentosum variant (XP-V) represents one of the most common forms of this cancer-prone DNA repair syndrome. Unlike classical XP cells, XP-V cells are normal in nucleotide excision repair but defective in post-replication repair. The precise molecular defect in XP-V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin-based plasmid to detect XP-V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP-V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer-containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co-sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP-V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di-thymine lesion.

Full Text

The Full Text of this article is available as a PDF (443.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bambara R. A., Murante R. S., Henricksen L. A. Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem. 1997 Feb 21;272(8):4647–4650. doi: 10.1074/jbc.272.8.4647. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burgers P. M. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma. 1998 Sep;107(4):218–227. doi: 10.1007/s004120050300. [DOI] [PubMed] [Google Scholar]
  4. Carty M. P., Lawrence C. W., Dixon K. Complete replication of plasmid DNA containing a single UV-induced lesion in human cell extracts. J Biol Chem. 1996 Apr 19;271(16):9637–9647. doi: 10.1074/jbc.271.16.9637. [DOI] [PubMed] [Google Scholar]
  5. Cordeiro-Stone M., Zaritskaya L. S., Price L. K., Kaufmann W. K. Replication fork bypass of a pyrimidine dimer blocking leading strand DNA synthesis. J Biol Chem. 1997 May 23;272(21):13945–13954. doi: 10.1074/jbc.272.21.13945. [DOI] [PubMed] [Google Scholar]
  6. Cordonnier A. M., Lehmann A. R., Fuchs R. P. Impaired translesion synthesis in xeroderma pigmentosum variant extracts. Mol Cell Biol. 1999 Mar;19(3):2206–2211. doi: 10.1128/mcb.19.3.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Efrati E., Tocco G., Eritja R., Wilson S. H., Goodman M. F. Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J Biol Chem. 1997 Jan 24;272(4):2559–2569. doi: 10.1074/jbc.272.4.2559. [DOI] [PubMed] [Google Scholar]
  8. Eki T., Enomoto T., Masutani C., Miyajima A., Takada R., Murakami Y., Ohno T., Hanaoka F., Ui M. Mouse DNA primase plays the principal role in determination of permissiveness for polyomavirus DNA replication. J Virol. 1991 Sep;65(9):4874–4881. doi: 10.1128/jvi.65.9.4874-4881.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ensch-Simon I., Burgers P. M., Taylor J. S. Bypass of a site-specific cis-Syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts. Biochemistry. 1998 Jun 2;37(22):8218–8226. doi: 10.1021/bi972460j. [DOI] [PubMed] [Google Scholar]
  10. Fien K., Stillman B. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol Cell Biol. 1992 Jan;12(1):155–163. doi: 10.1128/mcb.12.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibbs P. E., McGregor W. G., Maher V. M., Nisson P., Lawrence C. W. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876–6880. doi: 10.1073/pnas.95.12.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffmann J. S., Pillaire M. J., Garcia-Estefania D., Lapalu S., Villani G. In vitro bypass replication of the cisplatin-d(GpG) lesion by calf thymus DNA polymerase beta and human immunodeficiency virus type I reverse transcriptase is highly mutagenic. J Biol Chem. 1996 Jun 28;271(26):15386–15392. doi: 10.1074/jbc.271.26.15386. [DOI] [PubMed] [Google Scholar]
  13. Hoffmann J. S., Pillaire M. J., Maga G., Podust V., Hübscher U., Villani G. DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5356–5360. doi: 10.1073/pnas.92.12.5356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson R. E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 1999 Feb 12;283(5404):1001–1004. doi: 10.1126/science.283.5404.1001. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lawrence C. W., Hinkle D. C. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 1996;28:21–31. [PubMed] [Google Scholar]
  17. Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays. 1994 Apr;16(4):253–258. doi: 10.1002/bies.950160408. [DOI] [PubMed] [Google Scholar]
  18. Masutani C., Enomoto T., Suzuki M., Hanaoka F., Ui M. DNA primase stimulatory factor from mouse FM3A cells has an RNase H activity. Purification of the factor and analysis of the stimulation. J Biol Chem. 1990 Jun 25;265(18):10210–10216. [PubMed] [Google Scholar]
  19. McDonald J. P., Levine A. S., Woodgate R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 1997 Dec;147(4):1557–1568. doi: 10.1093/genetics/147.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGregor W. G., Wei D., Maher V. M., McCormick J. J. Abnormal, error-prone bypass of photoproducts by xeroderma pigmentosum variant cell extracts results in extreme strand bias for the kinds of mutations induced by UV light. Mol Cell Biol. 1999 Jan;19(1):147–154. doi: 10.1128/mcb.19.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Misra R. R., Vos J. M. Defective replication of psoralen adducts detected at the gene-specific level in xeroderma pigmentosum variant cells. Mol Cell Biol. 1993 Feb;13(2):1002–1012. doi: 10.1128/mcb.13.2.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mozzherin D. J., Shibutani S., Tan C. K., Downey K. M., Fisher P. A. Proliferating cell nuclear antigen promotes DNA synthesis past template lesions by mammalian DNA polymerase delta. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6126–6131. doi: 10.1073/pnas.94.12.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murata T., Iwai S., Ohtsuka E. Synthesis and characterization of a substrate for T4 endonuclease V containing a phosphorodithioate linkage at the thymine dimer site. Nucleic Acids Res. 1990 Dec 25;18(24):7279–7286. doi: 10.1093/nar/18.24.7279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nelson J. R., Lawrence C. W., Hinkle D. C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature. 1996 Aug 22;382(6593):729–731. doi: 10.1038/382729a0. [DOI] [PubMed] [Google Scholar]
  25. Nelson J. R., Lawrence C. W., Hinkle D. C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 1996 Jun 14;272(5268):1646–1649. doi: 10.1126/science.272.5268.1646. [DOI] [PubMed] [Google Scholar]
  26. O'Day C. L., Burgers P. M., Taylor J. S. PCNA-induced DNA synthesis past cis-syn and trans-syn-I thymine dimers by calf thymus DNA polymerase delta in vitro. Nucleic Acids Res. 1992 Oct 25;20(20):5403–5406. doi: 10.1093/nar/20.20.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quah S. K., von Borstel R. C., Hastings P. J. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 1980 Dec;96(4):819–839. doi: 10.1093/genetics/96.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roush A. A., Suarez M., Friedberg E. C., Radman M., Siede W. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol Gen Genet. 1998 Apr;257(6):686–692. doi: 10.1007/s004380050698. [DOI] [PubMed] [Google Scholar]
  29. Svoboda D. L., Briley L. P., Vos J. M. Defective bypass replication of a leading strand cyclobutane thymine dimer in xeroderma pigmentosum variant cell extracts. Cancer Res. 1998 Jun 1;58(11):2445–2448. [PubMed] [Google Scholar]
  30. Svoboda D. L., Vos J. M. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11975–11979. doi: 10.1073/pnas.92.26.11975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998;67:721–751. doi: 10.1146/annurev.biochem.67.1.721. [DOI] [PubMed] [Google Scholar]
  32. Wang Y. C., Maher V. M., McCormick J. J. Xeroderma pigmentosum variant cells are less likely than normal cells to incorporate dAMP opposite photoproducts during replication of UV-irradiated plasmids. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7810–7814. doi: 10.1073/pnas.88.17.7810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang Y. C., Maher V. M., Mitchell D. L., McCormick J. J. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Mol Cell Biol. 1993 Jul;13(7):4276–4283. doi: 10.1128/mcb.13.7.4276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wood R. D., Shivji M. K. Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis. 1997 Apr;18(4):605–610. doi: 10.1093/carcin/18.4.605. [DOI] [PubMed] [Google Scholar]
  35. Xiao W., Lechler T., Chow B. L., Fontanie T., Agustus M., Carter K. C., Wei Y. F. Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase zeta. Carcinogenesis. 1998 May;19(5):945–949. doi: 10.1093/carcin/19.5.945. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES