Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3502–3508. doi: 10.1093/emboj/18.12.3502

M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.

S Sethmann 1, P Ceglowski 1, J Willert 1, R Iwanicka-Nowicka 1, T A Trautner 1, J Walter 1
PMCID: PMC1171429  PMID: 10369689

Abstract

In all cytosine-C5-DNA-methyltransferases (MTases) from prokaryotes and eukaryotes, remarkably conserved amino acid sequence elements responsible for general enzymatic functions are arranged in the same canonical order. In addition, one variable region, which includes the target-recognizing domain(s) (TRDs) characteristic for each enzyme, has been localized in one region between the same blocks of these conserved elements. This conservation in the order of conserved and variable sequences suggests stringent structural constraints in the primary structure to obtain the correct folding of the enzymes. Here we report the characterization of a new type of a multispecific MTase, M.(phiphi)BssHII, which is expressed as two isoforms. Isoform I is an entirely novel type of MTase which has, in addition to the TRDs at the conventional location, one TRD located at a non-canonical position at its N-terminus. Isoform II is represented by the same MTase, but without the N-terminal TRD. The N-terminal TRD provides HaeII methylation specificity to isoform I. The TRD is fully functional when engineered into either the conventional variable region of M.(phiphi)BssHII or the related monospecific M.phi3TII MTase. The implications of this structural plasticity with respect to the evolution of MTases are discussed.

Full Text

The Full Text of this article is available as a PDF (299.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bestor T. H., Verdine G. L. DNA methyltransferases. Curr Opin Cell Biol. 1994 Jun;6(3):380–389. doi: 10.1016/0955-0674(94)90030-2. [DOI] [PubMed] [Google Scholar]
  2. Karreman C., de Waard A. Agmenellum quadruplicatum M.AquI, a novel modification methylase. J Bacteriol. 1990 Jan;172(1):266–272. doi: 10.1128/jb.172.1.266-272.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kass S. U., Pruss D., Wolffe A. P. How does DNA methylation repress transcription? Trends Genet. 1997 Nov;13(11):444–449. doi: 10.1016/s0168-9525(97)01268-7. [DOI] [PubMed] [Google Scholar]
  4. Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  5. Krüger T., Grund C., Wild C., Noyer-Weidner M. Characterization of the mcrBC region of Escherichia coli K-12 wild-type and mutant strains. Gene. 1992 May 1;114(1):1–12. doi: 10.1016/0378-1119(92)90700-y. [DOI] [PubMed] [Google Scholar]
  6. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R. J., Wilson G. G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994 Jan 11;22(1):1–10. doi: 10.1093/nar/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lauster R., Trautner T. A., Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989 Mar 20;206(2):305–312. doi: 10.1016/0022-2836(89)90480-4. [DOI] [PubMed] [Google Scholar]
  8. Leonhardt H., Page A. W., Weier H. U., Bestor T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992 Nov 27;71(5):865–873. doi: 10.1016/0092-8674(92)90561-p. [DOI] [PubMed] [Google Scholar]
  9. Malone T., Blumenthal R. M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995 Nov 3;253(4):618–632. doi: 10.1006/jmbi.1995.0577. [DOI] [PubMed] [Google Scholar]
  10. Mi S., Roberts R. J. How M.MspI and M.HpaII decide which base to methylate. Nucleic Acids Res. 1992 Sep 25;20(18):4811–4816. doi: 10.1093/nar/20.18.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Noyer-Weidner M., Trautner T. A. Methylation of DNA in prokaryotes. EXS. 1993;64:39–108. doi: 10.1007/978-3-0348-9118-9_4. [DOI] [PubMed] [Google Scholar]
  12. Noyer-Weidner M., Walter J., Terschüren P. A., Chai S., Trautner T. A. M.phi 3TII: a new monospecific DNA (cytosine-C5) methyltransferase with pronounced amino acid sequence similarity to a family of adenine-N6-DNA-methyltransferases. Nucleic Acids Res. 1994 Dec 11;22(24):5517–5523. doi: 10.1093/nar/22.24.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995 Jul 14;82(1):143–153. doi: 10.1016/0092-8674(95)90060-8. [DOI] [PubMed] [Google Scholar]
  14. Schumann J., Walter J., Willert J., Wild C., Koch D., Trautner T. A. M.BssHII, a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties. J Mol Biol. 1996 Apr 19;257(5):949–959. doi: 10.1006/jmbi.1996.0214. [DOI] [PubMed] [Google Scholar]
  15. Som S., Friedman S. Regulation of EcoRII methyltransferase: effect of mutations on gene expression and in vitro binding to the promoter region. Nucleic Acids Res. 1994 Dec 11;22(24):5347–5353. doi: 10.1093/nar/22.24.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Xu S., Xiao J., Posfai J., Maunus R., Benner J., 2nd Cloning of the BssHII restriction-modification system in Escherichia coli : BssHII methyltransferase contains circularly permuted cytosine-5 methyltransferase motifs. Nucleic Acids Res. 1997 Oct 15;25(20):3991–3994. doi: 10.1093/nar/25.20.3991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoder J. A., Bestor T. H. Genetic analysis of genomic methylation patterns in plants and mammals. Biol Chem. 1996 Oct;377(10):605–610. [PubMed] [Google Scholar]
  18. Yoder J. A., Walsh C. P., Bestor T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997 Aug;13(8):335–340. doi: 10.1016/s0168-9525(97)01181-5. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES