Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jul 1;18(13):3800–3807. doi: 10.1093/emboj/18.13.3800

Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.

T Pape 1, W Wintermeyer 1, M Rodnina 1
PMCID: PMC1171457  PMID: 10393195

Abstract

The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.

Full Text

The Full Text of this article is available as a PDF (242.6 KB).


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES