Abstract
Following entry into non-phagocytic HeLa cells, the facultative pathogen Salmonella typhimurium survives and replicates within a membrane-bound vacuole. Preceding the initiation of intracellular replication there is a lag phase, during which the bacteria modulate their environment. This phase is characterized by the rapid recycling of early endosomal proteins present on the nascent vacuole followed by the acquisition of a subset of lysosomal proteins. To gain a better understanding of the mechanism of intracellular survival, we have followed the biogenesis of the S. typhimurium-containing vacuole (SCV) in HeLa cells expressing different mutant forms of the small GTPase rab7. We demonstrate that the SCV recruits pre-existing lysosomal glycoproteins (Lgps) in a rab7-dependent manner, without directly interacting with lysosomes. We also show the transient accumulation, in the vicinity of the SCV, of novel rab7- and Lgp-containing vesicles containing very low amounts of cathepsin D. The size of these vesicles is dependent on rab7 activity, suggesting a role for rab7 in their homotypic fusion. Taken together, these results indicate that rab7 regulates SCV biogenesis during the phase characterized by the rapid acquisition of lysosomal proteins. We propose that SCV maturation involves its interaction with rab7/Lgp-containing vesicles which are possible intermediate cargo components of the late endocytic pathway.
Full Text
The Full Text of this article is available as a PDF (384.9 KB).