Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Oct 1;18(19):5264–5273. doi: 10.1093/emboj/18.19.5264

Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning.

D Balschun 1, D P Wolfer 1, F Bertocchini 1, V Barone 1, A Conti 1, W Zuschratter 1, L Missiaen 1, H P Lipp 1, J U Frey 1, V Sorrentino 1
PMCID: PMC1171597  PMID: 10508160

Abstract

Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long-term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal slices in vitro, whereas weak forms of plasticity generated by either a single weak tetanization or depotentiation of a robust LTP were impaired. These distinct physiological deficits were paralleled by a reduced flexibility in re-learning a new target in the water-maze. In contrast, learning performance in the acquisition phase and during probe trial did not differ between the mutants and their wild-type littermates. In the open-field, RyR3(-/-) mice displayed a normal exploration and habituation, but had an increased speed of locomotion and a mild tendency to circular running. The observed physiological and behavioral effects implicate RyR3-mediated Ca(2+) release in the intracellular processes underlying spatial learning and hippocampal synaptic plasticity.

Full Text

The Full Text of this article is available as a PDF (656.9 KB).


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES