Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Oct 15;18(20):5505–5516. doi: 10.1093/emboj/18.20.5505

A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea.

B Bölter 1, J Soll 1, K Hill 1, R Hemmler 1, R Wagner 1
PMCID: PMC1171619  PMID: 10523295

Abstract

Phosphorylated carbohydrates are the main photoassimilated export products from chloroplasts that support the energy household and metabolism of the plant cell. Channels formed by the chloroplastic outer envelope protein OEP21 selectively facilitate the translocation of triosephosphate, 3-phosphoglycerate and phosphate, central intermediates in the source-sink relationship between the chloroplast and the cytosol. The anion selectivity and asymmetric transport properties of OEP21 are modulated by the ratio between ATP and triosephosphates, 3-phosphoglycerate and phosphate in the intermembrane space. Conditions that lead to export of triosephosphate from chloroplasts, i.e. photosynthesis, result in outward-rectifying OEP21 channels, while a high ATP to triosephosphate ratio, e.g. dark metabolism, leads to inward-rectifying OEP21 channels with a less pronounced anion selectivity. We conclude that solute exchange between plastids and cytosol can already be regulated at the level of the organellar outer membrane.

Full Text

The Full Text of this article is available as a PDF (518.9 KB).


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES