Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The EMBO Journal logoLink to The EMBO Journal
. 1999 Nov 1;18(21):5994–6004. doi: 10.1093/emboj/18.21.5994

A 'distributed degron' allows regulated entry into the ER degradation pathway.

R G Gardner 1, R Y Hampton 1
PMCID: PMC1171665  PMID: 10545111

Abstract

Protein degradation is employed in both regulation and quality control. Regulated degradation of specific proteins is often mediated by discrete regions of primary sequence known as degrons, whereas protein quality control involves recognition of structural features common to damaged or misfolded proteins, rather than specific features of an individual protein. The yeast HMG-CoA reductase isozyme Hmg2p undergoes stringently regulated degradation by machinery that is also required for ER quality control. The 523 residue N-terminal transmembrane domain of Hmg2p is necessary and sufficient for regulated degradation. To understand how Hmg2p undergoes regulated degradation by the ER quality control pathway, we analyzed over 300 mutants of Hmg2p. Regulated degradation of Hmg2p requires information distributed over the entire transmembrane domain. Accordingly, we refer to this determinant as a 'distributed' degron, which has functional aspects consistent with both regulation and quality control. The Hmg2p degron functions in the specific, regulated degradation of Hmg2p and can impart regulated degradation to fusion proteins. However, its recognition is based on dispersed structural features rather than primary sequence motifs. This mode of targeting has important consequences both for the prediction of degradation substrates and as a potential therapeutic strategy for targeted protein degradation using endogenous degradation pathways.

Full Text

The Full Text of this article is available as a PDF (332.9 KB).


Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES