Abstract
The injection of neonatal mice with phenylalanine resulted in a rapid decrease in brain polyribosomes and a concomitant increase in monomeric ribosomes. Animals of 1-16 days of age were equally affected by phenylalanine, although the brain polyribosomes of 60-day-old mice were relatively resistant to the effects of phenylalanine. The population of free polyribosomes appeared to be more sensitive to phenylalanine treatment than bound polyribosomes, which were somewhat more resistant to disruption by high concentrations of the amino acid. The effects of phenylalanine were more pronounced with polyribosomes in the cerebral cortex than with those in the cerebellar tissue. The mechanism of polyribosome disruption was shown to be independent of hydrolysis mediated by ribonuclease. Virtually all of the monomeric ribosomes that resulted from phenylalanine treatment were shown to be inactive with regard to endogenous protein synthesis and were present in the cell cytoplasm as vacant couples. These ribosomes were readily dissociated by treatment with 0.5 M-KCl and subsequent ultracentrifugation. These results are discussed in the light of the possibility that high concentrations of phenylalanine disrupt brain protein synthesis by a molecular mechanism that is associated with initiation events.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki K., Siegel F. L. Hyperphenylalaninemia: disaggregation of brain polyribosomes in young rats. Science. 1970 Apr 3;168(3927):129–130. doi: 10.1126/science.168.3927.129. [DOI] [PubMed] [Google Scholar]
- Appel S. H. Inhibition of brain protein synthesis: an approach to the biochemical basis of neurological dysfunction in the amino-acidurias. Trans N Y Acad Sci. 1966 Nov;29(1):63–70. doi: 10.1111/j.2164-0947.1966.tb02252.x. [DOI] [PubMed] [Google Scholar]
- Baliga B. S., Pronczuk A. W., Munro H. N. Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol. 1968 Jul 14;34(2):199–218. doi: 10.1016/0022-2836(68)90247-7. [DOI] [PubMed] [Google Scholar]
- Belitsina N. V., Spirin A. S. Studies on the structure of ribosomes. IV. Participation of aminoacyl-transfer RNA and peptidyl-transfer RNA in the association of ribosomal subparticles. J Mol Biol. 1970 Aug 28;52(1):45–55. doi: 10.1016/0022-2836(70)90176-2. [DOI] [PubMed] [Google Scholar]
- Faiferman I., Pogo A. O., Schwartz J., Kaighn M. E. Isolation and characterization of membrane-bound polysomes from ascites tumor cells. Biochim Biophys Acta. 1973 Jul 13;312(3):492–501. doi: 10.1016/0005-2787(73)90447-4. [DOI] [PubMed] [Google Scholar]
- Gilbert B. E., Johnson T. C. Fetal development: the effects of maturation on in vitro protein synthesis by mouse brain tissue. J Neurochem. 1974 Oct;23(4):811–818. doi: 10.1111/j.1471-4159.1974.tb04407.x. [DOI] [PubMed] [Google Scholar]
- Gilbert B. E., Johnson T. C. Protein turnover during maturation of mouse brain tissue. J Cell Biol. 1972 Apr;53(1):143–147. doi: 10.1083/jcb.53.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamburger A. D., Lapidot Y., De Groot N. Thermal stability of poly(U)-tRNA-ribosome complexes with Phe-tRNA Phe and peptidyl-tRNA Phe . Eur J Biochem. 1973 Feb 1;32(3):576–583. doi: 10.1111/j.1432-1033.1973.tb02644.x. [DOI] [PubMed] [Google Scholar]
- Hemminki K. Differential responses of free and bound polysomes to inhibitors and neuroactive substances in vitro. J Neurochem. 1972 Nov;19(11):2699–2702. doi: 10.1111/j.1471-4159.1972.tb01330.x. [DOI] [PubMed] [Google Scholar]
- Hori M., Fisher J. M., Rabinovitz M. Tryptophan deficiency in rabbit reticulocytes: polyribosomes during interrupted growth of hemoglobin chains. Science. 1967 Jan 6;155(3758):83–84. doi: 10.1126/science.155.3758.83. [DOI] [PubMed] [Google Scholar]
- Johnson T. C., Luttges M. W. The effects of maturation on in vitro protein synthesis by mouse brain cells. J Neurochem. 1966 Jul;13(7):545–552. doi: 10.1111/j.1471-4159.1966.tb11950.x. [DOI] [PubMed] [Google Scholar]
- Khawaja J. A. Influence of spermine on amino acid incorporation by free, bound, and reattached ribosomes from rat liver. Acta Chem Scand. 1972;26(9):3450–3458. doi: 10.3891/acta.chem.scand.26-3450. [DOI] [PubMed] [Google Scholar]
- Lee S. Y., Krsmanovic V., Brawerman G. Attachment of ribosomes to membranes during polysome formation in mouse sarcoma 180 cells. J Cell Biol. 1971 Jun;49(3):683–691. doi: 10.1083/jcb.49.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerner M. P., Johnson T. C. Regulation of protein synthesis in developing mouse brain tissue. Alteration in ribosomal activity. J Biol Chem. 1970 Mar 25;245(6):1388–1393. [PubMed] [Google Scholar]
- Lerner M. P., Wettstein F. O., Herschman H. R., Stevens J. G., Fridlender B. R. Distribution of polysomes in mouse brain tissue. J Neurochem. 1971 Aug;18(8):1495–1507. doi: 10.1111/j.1471-4159.1971.tb00012.x. [DOI] [PubMed] [Google Scholar]
- MacInnes J. W., Schlesinger K. Effects of excess phenylalanine on in vitro and in vivo RNA and protein synthesis and polyribosome levels in brains of mice. Brain Res. 1971 Jun 4;29(1):101–110. doi: 10.1016/0006-8993(71)90420-3. [DOI] [PubMed] [Google Scholar]
- Martin T. E., Hartwell L. H. Resistance of active yeast ribosomes to dissociation by KCl. J Biol Chem. 1970 Mar 25;245(6):1504–1506. [PubMed] [Google Scholar]
- Mathews R. A., Wettstein F. O. Differences in the subunit exchange between native and runoff single ribosomes. Biochim Biophys Acta. 1974 Oct 28;366(3):300–309. doi: 10.1016/0005-2787(74)90290-1. [DOI] [PubMed] [Google Scholar]
- McKean C. M., Boggs D. E., Peterson N. A. The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain. J Neurochem. 1968 Mar;15(3):235–241. doi: 10.1111/j.1471-4159.1968.tb06202.x. [DOI] [PubMed] [Google Scholar]
- Menkes J. H. Cerebral proteolipids in phenylketonuria. Neurology. 1968 Oct;18(10):1003–1008. doi: 10.1212/wnl.18.10.1003. [DOI] [PubMed] [Google Scholar]
- Reader R. W., Stanners C. P. On the significance of ribosome dimers in extracts of animal cells. J Mol Biol. 1967 Sep 14;28(2):211–223. doi: 10.1016/s0022-2836(67)80004-4. [DOI] [PubMed] [Google Scholar]
- Rosbash M., Penman S. Membrane-associated protein synthesis of mammalian cells. I. The two classes of membrane-associated ribosomes. J Mol Biol. 1971 Jul 28;59(2):227–241. doi: 10.1016/0022-2836(71)90048-9. [DOI] [PubMed] [Google Scholar]
- Roscoe J. P., Eaton M. D., Choy G. C. Inhibition of protein synthesis in Krebs 2 ascites cells and cell-free systems by phenylalanine and its effect on leucine and lysine in the amino acid pool. Biochem J. 1968 Oct;109(4):507–515. doi: 10.1042/bj1090507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger K., Schreiber R. A., Griek B. J. Effects of experimentally induced phenylketonuria on seizure susceptibility in mice. J Comp Physiol Psychol. 1969 Feb;67(2):149–155. doi: 10.1037/h0026754. [DOI] [PubMed] [Google Scholar]
- Shah S. N., Peterson N. A., McKean C. M. Lipid composition of human cerebral white matter and myelin in phenylketonuria. J Neurochem. 1972 Oct;19(10):2369–2376. doi: 10.1111/j.1471-4159.1972.tb01291.x. [DOI] [PubMed] [Google Scholar]
- Siegel F. L., Aoki K., Colwell R. E. Polyribosome disaggregation and cell-free protein synthesis in preparations from cerebral cortex of hyperphenylalaninemic rats. J Neurochem. 1971 Apr;18(4):537–547. doi: 10.1111/j.1471-4159.1971.tb11984.x. [DOI] [PubMed] [Google Scholar]
- Swaiman K. F., Hosfield W. B., Lemieux B. Elevated plasma phenylalanine concentration and lysine incorporation into ribosomal protein of developing brain. J Neurochem. 1968 Jul;15(7):687–690. doi: 10.1111/j.1471-4159.1968.tb08968.x. [DOI] [PubMed] [Google Scholar]
- Vaughan M. H., Hansen B. S. Control of initiation of protein synthesis in human cells. Evidence for a role of uncharged transfer ribonucleic acid. J Biol Chem. 1973 Oct 25;248(20):7087–7096. [PubMed] [Google Scholar]
- WAISMAN H. A., WANG H. L., PALMER G., HARLOW H. F. Phenylketonuria in infant monkeys. Nature. 1960 Dec 24;188:1124–1125. doi: 10.1038/1881124b0. [DOI] [PubMed] [Google Scholar]
- Zomzely C. E., Roberts S., Brown D. M., Provost C. Cerebral protein synthesis. I. Physical properties of cerebral ribosomes and polyribosomes. J Mol Biol. 1966 Aug;19(2):455–468. doi: 10.1016/s0022-2836(66)80016-5. [DOI] [PubMed] [Google Scholar]
- Zomzely C. E., Roberts S., Gruber C. P., Brown D. M. Cerebral protein synthesis. II. Instability of cerebral messenger ribonucleic acid-ribosome complexes. J Biol Chem. 1968 Oct 25;243(20):5396–5409. [PubMed] [Google Scholar]