Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Nov;152(2):201–210. doi: 10.1042/bj1520201

4-Aminobutyrate in mammalian putrescine catabolism

N Seiler 1, B Eichentopf 1
PMCID: PMC1172461  PMID: 1220680

Abstract

The effects of inhibitors of diamine oxidase (EC 1.4.3.6), monoamine oxidase (EC 1.4.3.4) and 4-aminobutyrate aminotransferase (EC 2.6.1.19) on the catabolism of putrescine in mice in vivo were studied. Diamine oxidase inhibitors and carboxymethoxylamine (amino-oxyacetate) markedly inhibit the metabolism of [14C]putrescine to 14CO2, but affect different enzymes. Aminoguanidine specifically inhibits the mitochondrial and non-mitochondrial diamine oxidases, whereas carboxymethoxylamine specifically inhibits 4-aminobutyrate transamination by the mitochondrial pathway. Hydrazine inhibits at both sites, and results in increased concentrations of 4-aminobutyrate in brain and liver. Pretreatment of mice with carboxymethoxylamine and [14C]putrescine leads to the urinary excretion of amino[14C]butyrate. Carboxymethoxylamine does not affect the non-mitochondrial pathway of putrescine catabolism, as the product of oxidative deamination of putrescine in the extramitochondrial compartment is not further oxidized but is excreted in the urine as derivatives of 4-aminobutyraldehyde. Another catabolic pathway of putrescine involves monoamine oxidase, and the monoamine oxidase inhibitor, pargyline, decreases the metabolism of [14C]putrescine to 14CO2 in vivo. Catabolism of putrescine to CO2 in vivo occurs along different pathways, both of which have 4-aminobutyrate as a common intermediate, in contrast with the non-mitochondrial catabolism of putrescine, which terminates in the excretion of 4-aminobutyraldehyde derivatives. The significance of the different pathways is discussed.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAXTER C. F., ROBERTS E. Elevation of gamma-aminobutyric acid in brain: selective inhibition of gamma-aminobutyric-alpha-ketoglutaric acid transaminase. J Biol Chem. 1961 Dec;236:3287–3294. [PubMed] [Google Scholar]
  2. BAXTER C. F., ROBERTS E. The gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase of beef brain. J Biol Chem. 1958 Nov;233(5):1135–1139. [PubMed] [Google Scholar]
  3. BURKARD W. P., GEY K. F., PLETSCHER A. Diamine oxidase in the brain of vertebrates. J Neurochem. 1963 Mar;10:183–186. doi: 10.1111/j.1471-4159.1963.tb09481.x. [DOI] [PubMed] [Google Scholar]
  4. Caldarera C. M., Barbiroli B., Moruzzi G. Polyamines and nucleic acids during development of the chick embryo. Biochem J. 1965 Oct;97(1):84–88. doi: 10.1042/bj0970084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crabbe M. J., Bardsley W. G. Monoamine oxidase inhibitors and other drugs as inhibitors of diamine oxidase from human placenta and pig kidney. Biochem Pharmacol. 1974 Nov 1;23(21):2983–2900. doi: 10.1016/0006-2952(74)90273-1. [DOI] [PubMed] [Google Scholar]
  6. Duffy P. E., Defendini R., Kremzner L. T. Regulation of meningioma cell growth in vitro by polyamines. J Neuropathol Exp Neurol. 1971 Oct;30(4):698–713. doi: 10.1097/00005072-197110000-00012. [DOI] [PubMed] [Google Scholar]
  7. FISCHER F. G., BOHN H. Uber die Bestimmung von Spermin, Spermidin und anderen biogenen Aminen nach papierelektrophoretischer Abtrennung und ibre Mengenverhältnisse in tierischen Organen. Hoppe Seylers Z Physiol Chem. 1957;308(2-4):108–115. [PubMed] [Google Scholar]
  8. Fischer H. A., Korr H., Seiler N., Werner G. Interrelationships between polyamines and nucleic acids. 3. Metabolic and autoradiographic studies on putrescine in mouse brain. Brain Res. 1972 Apr 14;39(1):197–212. doi: 10.1016/0006-8993(72)90795-0. [DOI] [PubMed] [Google Scholar]
  9. Heby O., Lewan L. Putrescine and polyamines in relation to nucleic acids in mouse liver after partial hepatectomy. Virchows Arch B Cell Pathol. 1971;8(1):58–66. doi: 10.1007/BF02893515. [DOI] [PubMed] [Google Scholar]
  10. Hölttä E., Sinervirta R., Jänne J. Synthesis and accumulation of polyamines in rat liver regenerating after treatment with carbon tetrachloride. Biochem Biophys Res Commun. 1973 Sep 5;54(1):350–357. doi: 10.1016/0006-291x(73)90929-7. [DOI] [PubMed] [Google Scholar]
  11. Jänne J. Studies on the biosynthetic pathway of polyamines in rat liver. Acta Physiol Scand Suppl. 1967;300:1–71. [PubMed] [Google Scholar]
  12. KOBAYASHI Y. A histamine metabolizing enzyme system of mouse liver. Arch Biochem Biophys. 1957 Oct;71(2):352–357. doi: 10.1016/0003-9861(57)90045-0. [DOI] [PubMed] [Google Scholar]
  13. MEDINA M. A. The in vivo effects of hydrazines and vitamin B6 on the metabolism of gamma-aminobutyric acid. J Pharmacol Exp Ther. 1963 May;140:133–137. [PubMed] [Google Scholar]
  14. Marton L. J., Heby O., Wilson C. B. Increased polyamine concentrations in the cerebrospinal fluid of patients with brain tumors. Int J Cancer. 1974 Dec 15;14(6):731–735. doi: 10.1002/ijc.2910140606. [DOI] [PubMed] [Google Scholar]
  15. OKUYAMA T., KOBAYASHI Y. Determination of diamine oxidase activity by liquid scintillation counting. Arch Biochem Biophys. 1961 Nov;95:242–250. doi: 10.1016/0003-9861(61)90141-2. [DOI] [PubMed] [Google Scholar]
  16. PERRY T. L., SCHROEDER W. A. THE OCCURRENCE OF AMINES IN HUMAN URINE: DETERMINATION BY COMBINED ION EXCHANGE AND PAPER CHROMATOGRAPHY. J Chromatogr. 1963 Nov;12:358–373. doi: 10.1016/s0021-9673(01)83697-9. [DOI] [PubMed] [Google Scholar]
  17. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  18. Pohjanpelto P., Raina A. Identification of a growth factor produced by human fibroblasts in vitro as putrescine. Nat New Biol. 1972 Feb 23;235(60):247–249. doi: 10.1038/newbio235247a0. [DOI] [PubMed] [Google Scholar]
  19. Pohjanpelto P. Relationship between putrescine and the proliferation of human fibroblasts in vitro. Exp Cell Res. 1973 Jul;80(1):137–142. doi: 10.1016/0014-4827(73)90284-x. [DOI] [PubMed] [Google Scholar]
  20. Reynolds A. F., Russell D. H. Stimulation of (14C)uridine incorporation into RNA by intracisternal injections of putrescine. Brain Res. 1973 Oct 26;61:452–455. doi: 10.1016/0006-8993(73)90556-8. [DOI] [PubMed] [Google Scholar]
  21. Russell D. H., Medina V. J., Snyder S. H. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain. J Biol Chem. 1970 Dec 25;245(24):6732–6738. [PubMed] [Google Scholar]
  22. Russell D. H. The roles of the polyamines, putrescine, spermidine, and spermine in normal and malignant tissues. Life Sci. 1973 Dec 16;13(12):1635–1647. doi: 10.1016/0024-3205(73)90111-2. [DOI] [PubMed] [Google Scholar]
  23. SCHAYER R. W., SMILEY R. L., KENNEDY J. Diamine oxidase and cadaverine metabolism. J Biol Chem. 1954 Jan;206(1):461–464. [PubMed] [Google Scholar]
  24. SCHULER W. Zur Hemmung der Diaminooxydase (Histaminase). Experientia. 1952 Jun 15;8(6):230–232. doi: 10.1007/BF02170726. [DOI] [PubMed] [Google Scholar]
  25. Seiler N., Al-Therib M. J., Knödgen B. Occurrence of monoacetylputrescine in vertebrate tissue. Hoppe Seylers Z Physiol Chem. 1973 May;354(5):589–590. [PubMed] [Google Scholar]
  26. Seiler N., Al-Therib M. J. Putrescine catabolism in mammalian brain. Biochem J. 1974 Oct;144(1):29–35. doi: 10.1042/bj1440029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seiler N. Identification and quantitation of amines by thin-layer chromatography. J Chromatogr. 1971 Dec 9;63(1):97–112. doi: 10.1016/s0021-9673(01)85620-x. [DOI] [PubMed] [Google Scholar]
  28. Seiler N., Knödgen B. Die Umwandlung von Glutaminsäure, Putrescin und Ornithin in die gamma-Aminobuttersäure im Gehirn. Hoppe Seylers Z Physiol Chem. 1971 Jan;352(1):97–105. doi: 10.1515/bchm2.1971.352.1.97. [DOI] [PubMed] [Google Scholar]
  29. Seiler N., Lamberty U., Al-Therib M. J. Acetyl-coenzyme A: 1,4-diaminobutane N-acetyltransferase: activity in rat brain during development, in experimental brain tumours and in brains of fish of different metabolic activity. J Neurochem. 1975 Apr;24(4):797–800. [PubMed] [Google Scholar]
  30. Seiler N., Lamberty U. Interrelations between polyamines and nucleic acids: changes of polyamine and nucleic acid concentrations in the developing rat brain. J Neurochem. 1975 Jan;24(1):5–13. doi: 10.1111/j.1471-4159.1975.tb07621.x. [DOI] [PubMed] [Google Scholar]
  31. Seiler N., Lamberty U. Interrelationships between polyamines and nucleic acids. Changes of polyamine and nucleic acid concentrations in the growing fish brain (Salmo irideus Gibb.). J Neurochem. 1973 Mar;20(3):709–717. doi: 10.1111/j.1471-4159.1973.tb00031.x. [DOI] [PubMed] [Google Scholar]
  32. Seiler N., Schmidt-Glenewinkel T. Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system. J Neurochem. 1975 Apr;24(4):791–795. [PubMed] [Google Scholar]
  33. Seiler N. Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal. 1970;18:259–337. doi: 10.1002/9780470110362.ch5. [DOI] [PubMed] [Google Scholar]
  34. Seiler N., Wiechmann M. Die Bestimmung der gamma-Amino-buttersäure im 10-11-Mol-Bereich als 1-Dimethylamino-naphthalin-5-sulfonyl-Derivat. Hoppe Seylers Z Physiol Chem. 1968 May;349(5):588–594. [PubMed] [Google Scholar]
  35. Seiler N., Wiechmann M. Zum Vorkommen der gamma-Amino-buttersäure und der gamma-Amino-beta-hydroy-buttersäure in tierishchem Gewebe. Hoppe Seylers Z Physiol Chem. 1969 Dec;350(12):1493–1500. [PubMed] [Google Scholar]
  36. Seiler N., al-Therib M. J. Acetyl-CoA: 1,4-diaminobutane N-acetyltransferase. Occurrence in vertebrate organs and subcellular localization. Biochim Biophys Acta. 1974 Jul 4;354(2):206–212. doi: 10.1016/0304-4165(74)90007-5. [DOI] [PubMed] [Google Scholar]
  37. TABOR H., TABOR C. W. SPERMIDINE, SPERMINE, AND RELATED AMINES. Pharmacol Rev. 1964 Sep;16:245–300. [PubMed] [Google Scholar]
  38. TAYLOR J. D., WYKES A. A., GLADISH Y. C., MARTIN W. B. New inhibitor of monoamine oxidase. Nature. 1960 Sep 10;187:941–942. doi: 10.1038/187941a0. [DOI] [PubMed] [Google Scholar]
  39. WALLACH D. P. Studies on the GABA pathway. I. The inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase in vitro and in vivo by U-7524 (amino-oxyacetic acid). Biochem Pharmacol. 1961 Feb;5:323–331. doi: 10.1016/0006-2952(61)90023-5. [DOI] [PubMed] [Google Scholar]
  40. WATON N. G. Studies on mammalian histidine decarboxylase. Br J Pharmacol Chemother. 1956 Jun;11(2):119–127. doi: 10.1111/j.1476-5381.1956.tb01039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Williams-Ashman H. G., Jänne J., Coppoc G. L., Geroch M. E., Schenone A. New aspects of polyamine biosynthesis in eukaryotic organisms. Adv Enzyme Regul. 1972;10:225–245. doi: 10.1016/0065-2571(72)90016-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES