Abstract
1. Obelin, the Ca2+-activated luminescent protein from the hydroid Obelia geniculata, was sealed inside pigeon erythrocyte `ghosts' in order to investigate effects on their permeability of different methods of preparation and of the bivalent cation ionophore A23187. 2. Changes in free Ca2+ within the `ghosts' were studied by following the rate of luminescence of obelin. The possibility that the obelin might have been released from the `ghosts' during an experiment was investigated by studying the release of inulin and pyruvate kinase from the `ghosts'. Less than 10% of the inulin or pyruvate kinase sealed within the `ghosts' was released under any of the experimental conditions. 3. Triton X-100 (0.1–10%, v/v) made the `ghosts' highly permeable to Ca2+. In the presence of 1mm-Ca2+ and Triton, 95–100% of the obelin was utilized within 10–20s. 4. A time-course of resealing `ghosts' at 37°C showed that over a period of 90min, the `ghosts' became gradually less permeable to Ca2+. `Ghosts' which remained at 0°C retained only a small concentration of obelin and ATP, and were highly permeable to Ca2+. 5. Erythrocyte `ghosts' resealed for 30min at 20°C rather than 37°C were more permeable to Ca2+, as shown by the fact that 92% of the obelin in the `ghosts' was utilized during the first 60s after the addition of 1mm-Ca2+, as opposed to 44% for `ghosts' resealed at 37°C. 6. Haemolysis at pH6.0 rather than 7.0 resulted in `ghosts' which were highly permeable to Ca2+ after resealing for 60min at 37°C. Of the obelin in the `ghosts', produced by haemolysis at pH6.0, 90% was utilized in the first 60s after the addition of 1mm-Ca2+ compared with 23% for `ghosts' produced at pH7.0. 7. The bivalent cation ionophore A23187 increased the permeability of the `ghosts' to Ca2+. Maximum effects of the ionophore (16μg/ml) were obtained by preincubating the `ghosts' with the ionophore A23187 (16μg/ml) in the presence of a low concentration of Mg2+ and in the absence of Ca2+.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley C. C., Caldwell P. C. Calcium movements in relation to contraction. Biochem Soc Symp. 1974;(39):29–50. [PubMed] [Google Scholar]
- Ashley C. C., Ellory J. C., Hainaut K. Calcium movements in single crustacean muscle fibres. J Physiol. 1974 Oct;242(1):255–272. doi: 10.1113/jphysiol.1974.sp010705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashley C. C., Ridgway E. B. On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol. 1970 Jul;209(1):105–130. doi: 10.1113/jphysiol.1970.sp009158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashley C. C., Ridgway E. B. Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibers. Nature. 1968 Sep 14;219(5159):1168–1169. doi: 10.1038/2191168a0. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
- Bramley T. A., Coleman R. Effects of inclusion of Ca 2+ , Mg 2+ , EDTA or EGTA during the preparation of erythrocyte ghosts by hypotonic haemolysis. Biochim Biophys Acta. 1972 Dec 1;290(1):219–228. doi: 10.1016/0005-2736(72)90065-x. [DOI] [PubMed] [Google Scholar]
- Bramley T. A., Coleman R., Finean J. B. Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities. Biochim Biophys Acta. 1971 Sep 14;241(3):752–769. doi: 10.1016/0005-2736(71)90003-4. [DOI] [PubMed] [Google Scholar]
- Buckley J. T. Calcium ion transport by pig erythrocyte membrane vesicles. Biochem J. 1974 Sep;142(3):521–526. doi: 10.1042/bj1420521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell A. K. Extraction, partial purification and properties of obelin, the calcium-activated luminescent protein from the hydroid Obelia geniculata. Biochem J. 1974 Nov;143(2):411–418. doi: 10.1042/bj1430411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVOREN P. R., SUTHERLAND E. W. THE EFFECT OF L-EPINEPHRINE AND OTHER AGENTS ON THE SYNTHESIS AND RELEASE OF ADENOSINE 3',5'-PHOSPHATE BY WHOLE PIGEON ERYTHROCYTES. J Biol Chem. 1963 Sep;238:3009–3015. [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Eimerl S., Savion N., Heichal O., Selinger Z. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium. An experimental bypass of the hormone receptor pathway. J Biol Chem. 1974 Jun 25;249(12):3991–3993. [PubMed] [Google Scholar]
- Entman M. L., Allen J. C., Bornet E. P., Gillette P. C., Wallick E. T., Schwart A. Mechanisms of calcium accumulation and transport in cardiac relaxing system (sarcoplasmic reticulum membranes): effects of Verapamil, D-600, X537A and A23187. J Mol Cell Cardiol. 1972 Dec;4(6):681–687. doi: 10.1016/0022-2828(72)90121-6. [DOI] [PubMed] [Google Scholar]
- Ettienne E. M. Control of contractility in Spirostomum by dissociated calcium ions. J Gen Physiol. 1970 Aug;56(2):168–179. doi: 10.1085/jgp.56.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exton J. H., Friedmann N., Wong E. H., Brineaux J. P., Corbin J. D., Park C. R. Interaction of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenolysis in liver and of lipolysis in adipose tissue. J Biol Chem. 1972 Jun 10;247(11):3579–3588. [PubMed] [Google Scholar]
- Friedmann N., Park C. R. Early effects of 3',5'-adenosine monophosphate on the fluxes of calcium end potassium in the perfused liver of normal and adrenalectomized rats. Proc Natl Acad Sci U S A. 1968 Oct;61(2):504–508. doi: 10.1073/pnas.61.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia A. G., Kirpekar S. M., Prat J. C. A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. J Physiol. 1975 Jan;244(1):253–262. doi: 10.1113/jphysiol.1975.sp010795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanahan D. J., Ekholm J., Hildenbrandt G. Biochemical variability of human erythrocyte membrane preparations, as demonstrated by sodium-potassium-magnesium and calcium adenosine triphosphatase activities. Biochemistry. 1973 Mar 27;12(7):1374–1387. doi: 10.1021/bi00731a018. [DOI] [PubMed] [Google Scholar]
- Harris J. R., Brown J. N. The preparation of nucleated erythrocyte ghosts from avian erythrocytes. Br Poult Sci. 1971 Jan;12(1):95–99. doi: 10.1080/00071667108415857. [DOI] [PubMed] [Google Scholar]
- Katocs A. S., Jr, Largis E. E., Allen D. O. Role of Ca2+ in adrenocorticotropic hormone-stimulated lipolysis in the perfused fat cell system. J Biol Chem. 1974 Apr 10;249(7):2000–2004. [PubMed] [Google Scholar]
- Kissebah A. H., Tulloch B. R., Vydelingum N., Hope-Gill H., Clarke P., Fraser T. R. The role of calcium in insulin action. II. Effects of insulin and procaine hydrochloride on lipolysis. Horm Metab Res. 1974 Sep;6(5):357–364. doi: 10.1055/s-0028-1093825. [DOI] [PubMed] [Google Scholar]
- Llinás R., Nicholson C. Calcium role in depolarization-secretion coupling: an aequorin study in squid giant synapse. Proc Natl Acad Sci U S A. 1975 Jan;72(1):187–190. doi: 10.1073/pnas.72.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moisescu D. G., Ashley C. C., Campbell A. K. Comparative aspects of the calcium-sensitive photoproteins aequorin and obelin. Biochim Biophys Acta. 1975 Jul 8;396(1):133–140. doi: 10.1016/0005-2728(75)90196-6. [DOI] [PubMed] [Google Scholar]
- Morin J. G., Hastings J. W. Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol. 1971 Jun;77(3):305–312. doi: 10.1002/jcp.1040770304. [DOI] [PubMed] [Google Scholar]
- Rasmussen H., Goodman D. B., Tenenhouse A. The role of cyclic AMP and calcium in cell activation. CRC Crit Rev Biochem. 1972 Feb;1(1):95–148. doi: 10.3109/10409237209102545. [DOI] [PubMed] [Google Scholar]
- Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Baldassare J., Inesi G. The effect of calcium ionophores on fragmented sarcoplasmic reticulum. J Gen Physiol. 1972 Dec;60(6):735–749. doi: 10.1085/jgp.60.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
- Selinger Z., Eimerl S., Schramm M. A calcium ionophore simulating the action of epinephrine on the alpha-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Jan;71(1):128–131. doi: 10.1073/pnas.71.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddle K., Hales C. N. The action of local anaesthetics on lipolysis and on adenosine 3':5'-cyclic monophosphate content in isolated rat fat-cells. Biochem J. 1974 Aug;142(2):345–351. doi: 10.1042/bj1420345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddle K., Kane-Maguire B., Campbell A. K. The effects of glucagon and insulin on adenosine 3':5'-cyclic monophosphate concentrations in an organ culture of mature rat liver. Biochem J. 1973 Apr;132(4):765–773. doi: 10.1042/bj1320765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
- Steinhardt R. A., Epel D., Carroll E. J., Jr, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature. 1974 Nov 1;252(5478):41–43. doi: 10.1038/252041a0. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner M. L., Lee K. S. Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes. J Gen Physiol. 1972 Apr;59(4):462–475. doi: 10.1085/jgp.59.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werner S., Alm B., Löw H. Effects of adrenalectomy and resubstitution with moderate and high doses of cortisone acetate on lipolysis and 47 calcium uptake in rat adipose tissue in vivo. Horm Metab Res. 1972 May;4(3):195–201. doi: 10.1055/s-0028-1094048. [DOI] [PubMed] [Google Scholar]
- Wessels J. M., Pals D. T., Veerkamp J. H. Some aspects of the osmotic lysis of erythrocytes. I. A reexamination of the osmotic lysis method. Biochim Biophys Acta. 1973 Jan 2;291(1):165–177. doi: 10.1016/0005-2736(73)90409-4. [DOI] [PubMed] [Google Scholar]
- Wessels J. M., Veerkamp J. H. Some aspects of the osmotic lysis of erythrocytes. 3. Comparison of glycerol permeability and lipid composition of red blood cell membranes from eight mammalian species. Biochim Biophys Acta. 1973 Jan 2;291(1):190–196. doi: 10.1016/0005-2736(73)90411-2. [DOI] [PubMed] [Google Scholar]
- Wessels J. M., Veerkamp J. H. Some aspects of the osmotic lysis of erythrocytes. II. Differences in osmotic behaviour of erythrocytes after treatment with electrolyte and non-electrolyte solutions. Biochim Biophys Acta. 1973 Jan 2;291(1):178–189. doi: 10.1016/0005-2736(73)90410-0. [DOI] [PubMed] [Google Scholar]