Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Nov;152(2):291–302. doi: 10.1042/bj1520291

Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells

Richard Harwood 1, Michael E Grant 1, David S Jackson 1
PMCID: PMC1172471  PMID: 1220686

Abstract

1. The glycosylation of hydroxylysine during the biosynthesis of procollagen by embryonic chick tendon and cartilage cells was examined. When free and membrane-bound ribosomes isolated from cells labelled for 4min with [14C]lysine were assayed for hydroxy[14C]lysine and hydroxy[14C]lysine glycosides, it was found that hydroxylation took place only on membrane-bound ribosomes and that some synthesis of galactosylhydroxy[14C]lysine and glucosylgalactosylhydroxy[14C]lysine had occurred on the nascent peptides. 2. Assays of subcellular fractions isolated from tendon and cartilage cells labelled for 2h with [14C]lysine demonstrated that the glycosylation of procollagen polypeptides began in the rough endoplasmic reticulum. 14C-labelled polypeptides present in the smooth endoplasmic reticulum and Golgi fractions were glycosylated to extents almost identical with the respective secreted procollagens. 3. Assays specific for collagen galactosyltransferase and collagen glucosyltransferase are described, using as substrate chemically treated bovine anterior-lens-capsule collagen. 4. When homogenates were assayed for the collagen glycosyltransferase activities, addition of Triton X-100 (0.01%, w/v) was found to stimulate enzyme activities by up to 45%, suggesting that the enzymes were probably membrane-bound. 5. Assays of subcellular fractions obtained by differential centrifugation for collagen galactosyltransferase activity indicated the specific activity to be highest in the microsomal fractions. Similar results were obtained for collagen glucosyltransferase activity. 6. When submicrosomal fractions obtained by discontinuous-sucrose-density-gradient-centrifugation procedures were assayed for these enzymic activities, the collagen galactosyltransferase was found to be distributed in the approximate ratio 7:3 between rough and smooth endoplasmic reticulum of both cell types. Similar determinations of collagen glucosyltransferase indicated a distribution in the approximate ratio 3:2 between rough and smooth microsomal fractions. 7. Assays of subcellular fractions for the plasma-membrane marker 5′-nucleotidase revealed a distribution markedly different from the distributions obtained for the collagen glycosyltransferase. 8. The studies described here demonstrate that glycosylation occurs early in the intracellular processing of procollagen polypeptides rather than at the plasma membrane, as was previously suggested.

Full text

PDF
291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askenasi R. S., Kefalides N. A. Simple chromatographic method for determination of 14 C-labeled lysine, hydroxylysine, and hydroxylysine glycosides. Anal Biochem. 1972 May;47(1):67–72. doi: 10.1016/0003-2697(72)90279-5. [DOI] [PubMed] [Google Scholar]
  2. Barber A. J., Jamieson G. A. Characterization of membrane-bound collagen galactosyltransferase of human blood platelets. Biochim Biophys Acta. 1971 Dec 21;252(3):546–552. doi: 10.1016/0304-4165(71)90157-7. [DOI] [PubMed] [Google Scholar]
  3. Barber A. J., Jamieson G. A. Platelet collagen adhesion characterization of collagen glucosyltransferase of plasma membranes of human blood platelets. Biochim Biophys Acta. 1971 Dec 21;252(3):533–545. doi: 10.1016/0304-4165(71)90156-5. [DOI] [PubMed] [Google Scholar]
  4. Blobel G., Potter V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J Mol Biol. 1967 Jun 14;26(2):279–292. doi: 10.1016/0022-2836(67)90297-5. [DOI] [PubMed] [Google Scholar]
  5. Bosmann H. B. Collagen-galactosyl transferase: subcellular localization and distribution in fibroblasts transformed by oncogenic viruses. Life Sci. 1969 Jul 15;8(14):737–746. doi: 10.1016/0024-3205(69)90010-1. [DOI] [PubMed] [Google Scholar]
  6. Bosmann H. B., Eylar E. H. Attachment of carbohydrate to collagen. Isolation, purification and properties of the glucosyl transferase. Biochem Biophys Res Commun. 1968 Jan 11;30(1):89–94. doi: 10.1016/0006-291x(68)90717-1. [DOI] [PubMed] [Google Scholar]
  7. Bosmann H. B., Eylar E. H. Glycoprotein biosynthesis: the biosynthesis of the hydroxylysine-galactose linkage in collagen. Biochem Biophys Res Commun. 1968 Oct 24;33(2):340–346. doi: 10.1016/0006-291x(68)90790-0. [DOI] [PubMed] [Google Scholar]
  8. Bosmann H. B. Platelet adhesiveness and aggregation: the collagen:glycosyl, polypeptide:N-acetylgalactosaminyl and glycoprotein:galactosyl transferases of human platelets. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1118–1124. doi: 10.1016/0006-291x(71)90578-x. [DOI] [PubMed] [Google Scholar]
  9. Chesney C. M., Harper E., Colman R. W. Critical role of the carbohydrate side chains of collagen in platelet aggregation. J Clin Invest. 1972 Oct;51(10):2693–2701. doi: 10.1172/JCI107088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dehm P., Prockop D. J. Biosynthesis of cartilage procollagen. Eur J Biochem. 1973 May;35(1):159–166. doi: 10.1111/j.1432-1033.1973.tb02821.x. [DOI] [PubMed] [Google Scholar]
  11. Dehm P., Prockop D. J. Time lag in the secretion of collagen by matrix-free tendon cells and inhibition of the secretory process by colchicine and vinblastine. Biochim Biophys Acta. 1972 Apr 21;264(2):375–382. doi: 10.1016/0304-4165(72)90302-9. [DOI] [PubMed] [Google Scholar]
  12. Fleischer B., Fleischer S., Ozawa H. Isolation and characterization of Golgi membranes from bovine liver. J Cell Biol. 1969 Oct;43(1):59–79. doi: 10.1083/jcb.43.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grant M. E., Kefalides N. A., Prockop D. J. The biosynthesis of basement membrane collagen in embryonic chick lens. I. Delay between the synthesis of polypeptide chains and the secretion of collagen by matrix-free cells. J Biol Chem. 1972 Jun 10;247(11):3539–3544. [PubMed] [Google Scholar]
  14. HEPPEL L. A., HILMORE R. J. Purification and properties of 5-nucleotidase. J Biol Chem. 1951 Feb;188(2):665–676. [PubMed] [Google Scholar]
  15. Hagopian A., Bosmann H. B., Eylar E. H. Glycoprotein biosynthesis: the localization of polypeptidyl: N-acetylgalactosaminyl, collagen: glucosyl, and glycoprotein:galactosyl transferases in HeLa cell membrane fractions. Arch Biochem Biophys. 1968 Nov;128(2):387–396. doi: 10.1016/0003-9861(68)90045-3. [DOI] [PubMed] [Google Scholar]
  16. Harwood R., Bhalla A. K., Grant M. E., Jackson D. S. The synthesis and secretion of cartilage procollagen. Biochem J. 1975 Apr;148(1):129–138. doi: 10.1042/bj1480129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harwood R., Connolly A. D., Grant M. E., Jackson D. S. Presumptive mRNA for procollagen: occurrence in membrane bound ribosomes of embryonic chick tendon fibroblasts. FEBS Lett. 1974 Apr 15;41(1):85–88. doi: 10.1016/0014-5793(74)80960-9. [DOI] [PubMed] [Google Scholar]
  18. Harwood R., Grant M. E., Jackson D. S. Collagen biosynthesis. Characterization of subcellular fractions from embyonic chick fibroblasts and the intracellular localization of protocollagen prolyl and protocollagen lysyl hydroxylases. Biochem J. 1974 Oct;144(1):123–130. doi: 10.1042/bj1440123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harwood R., Grant M. E., Jackson D. S. Influence of ascorbic acid on ribosomal patterns and collagen biosynthesis in healing wounds of scorbutic guinea pigs. Biochem J. 1974 Sep;142(3):641–651. doi: 10.1042/bj1420641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harwood R., Grant M. E., Jackson D. S. The association of collagen galactosyl- and glucosyl-transferases with subcellular fractions of embryonic chick tendon cells. Biochem Soc Trans. 1975;3(1):136–137. doi: 10.1042/bst0030136. [DOI] [PubMed] [Google Scholar]
  21. Harwood R., Grant M. E., Jackson D. S. The sub-cellular location of inter-chain disulfide bond formation during procollagen biosynthesis by embryonic chick tendon cells. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1188–1196. doi: 10.1016/s0006-291x(73)80020-8. [DOI] [PubMed] [Google Scholar]
  22. Kang A. H., Beachey E. H., Katzman R. L. Interaction of an active glycopeptide from chick skin collagen (alpha 1-CB5) with human platelets. J Biol Chem. 1974 Feb 25;249(4):1054–1059. [PubMed] [Google Scholar]
  23. Katzman R. L., Kang A. H., Beachey E. H. Collagen-induced platelet aggregation: involement of an active glycopeptide fragment (alpha1-CB5). Science. 1973 Aug 17;181(4100):670–672. doi: 10.1126/science.181.4100.670. [DOI] [PubMed] [Google Scholar]
  24. Kefalides N. A., Denduchis B. Structural components of epithelial and endothelial basement membranes. Biochemistry. 1969 Nov;8(11):4613–4621. doi: 10.1021/bi00839a057. [DOI] [PubMed] [Google Scholar]
  25. Kefalides N. A. Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res. 1973;6:63–104. doi: 10.1016/b978-0-12-363706-2.50008-8. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lehtinen P., Vuorio E., Kulonen E. Plasma membranes from experimental granulation tissue. Biochem J. 1975 Mar;146(3):565–573. doi: 10.1042/bj1460565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MOORE S., STEIN W. H. Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem. 1951 Oct;192(2):663–681. [PubMed] [Google Scholar]
  29. Molnar J., Sy D. Attachment of glucosamine to protein at the ribosomal site of rat liver. Biochemistry. 1967 Jul;6(7):1941–1947. doi: 10.1021/bi00859a009. [DOI] [PubMed] [Google Scholar]
  30. Morgan P. H., Jacobs H. G., Segrest J. P., Cunningham L. W. A comparative study of glycopeptides derived from selected vertebrate collagens. A possible role of the carbohydrate in fibril formation. J Biol Chem. 1970 Oct 10;245(19):5042–5048. [PubMed] [Google Scholar]
  31. Olsen B. R., Berg R. A., Kishida Y., Prockop D. J. Collagen synthesis: localization of prolyl hydroxylase in tendon cells detected with ferritin-labeled antibodies. Science. 1973 Nov 23;182(4114):825–827. doi: 10.1126/science.182.4114.825. [DOI] [PubMed] [Google Scholar]
  32. Olsen B. R., Prockop D. J. Ferritin-conjugated antibodies used for labeling of organelles involved in the cellular synthesis and transport of procollagen. Proc Natl Acad Sci U S A. 1974 May;71(5):2033–2037. doi: 10.1073/pnas.71.5.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Risteli J., Kivirikko K. I. Activities of prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase in the liver of rats with hepatic injury. Biochem J. 1974 Oct;144(1):115–122. doi: 10.1042/bj1440115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  35. Schenkein I., Uhr J. W. Immunoglobulin synthesis and secretion. I. Biosynthetic studies of the addition of the carbohydrate moieties. J Cell Biol. 1970 Jul;46(1):42–51. doi: 10.1083/jcb.46.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sherr C. J., Uhr J. W. Immunoglobulin synthesis and secretion. V. Incorporation of leucine and glucosamine into immunoglobulin on free and bound polyribosomes. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1183–1189. doi: 10.1073/pnas.66.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spiro M. J., Spiro R. G. Studies on the biosynthesis of the hydroxylsine-linked disaccharide unit of basement membranes and collagens. II. Kidney galactosyltransferase. J Biol Chem. 1971 Aug 25;246(16):4910–4918. [PubMed] [Google Scholar]
  38. Spiro R. G. Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. J Biol Chem. 1969 Feb 25;244(4):602–612. [PubMed] [Google Scholar]
  39. Spiro R. G., Spiro M. J. Studies on the biosynthesis of the hydroxylysine-liked disaccharide unit of basement membranes and collagens. I. Kidney glucosyltransferase. J Biol Chem. 1971 Aug 25;246(16):4899–4909. [PubMed] [Google Scholar]
  40. Spiro R. G., Spiro M. J. Studies on the biosynthesis of the hydroxylysine-linked disaccharide unit of basement membranes and collagens. 3. Tissue and subcellular distribution of glycosyltransferases and the effect of various conditions on the enzyme levels. J Biol Chem. 1971 Aug 25;246(16):4919–4925. [PubMed] [Google Scholar]
  41. Spiro R. G. The structure of the disaccharide unit of the renal glomerular basement membrane. J Biol Chem. 1967 Oct 25;242(20):4813–4823. [PubMed] [Google Scholar]
  42. Tulkens P., Beaufay H., Trouet A. Analytical fractionation of homogenates from cultured rat embryo fibroblasts. J Cell Biol. 1974 Nov;63(2 Pt 1):383–401. doi: 10.1083/jcb.63.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Uhr J. W., Schenkein I. Immunoglobulin synthesis and secretion, IV. Sites of incorporation of sugars as determined by subcellular fractionation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):952–958. doi: 10.1073/pnas.66.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES