Abstract
Although basal release of cyclic AMP from isolated perfused rat hearts was not measurable, isoprenaline induced substantial release of the nucleotide, suggesting that in vivo the myocardium can contribute to plasma cyclic AMP. Anoxia also increased the amount of cyclic AMP released, but insulin and nicotinate alone or in combination had no effect.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Broadus A. E., Kaminsky N. I., Hardman J. G., Sutherland E. W., Liddle G. W. Kinetic parameters and renal clearances of plasma adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in man. J Clin Invest. 1970 Dec;49(12):2222–2236. doi: 10.1172/JCI106441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christian D. R., Kilsheimer G. S., Pettett G., Paradise R., Ashmore J. Regulation of lipolysis in cardiac muscle: a system similar to the hormone-sensitive lipase of adipose tissue. Adv Enzyme Regul. 1969;7:71–82. doi: 10.1016/0065-2571(69)90011-9. [DOI] [PubMed] [Google Scholar]
- Entman M. L. The role of cyclic AMP in the modulation of cardiac contractility. Adv Cyclic Nucleotide Res. 1974;4(0):163–193. [PubMed] [Google Scholar]
- Exton J. H., Lewis S. B., Ho R. J., Park C. R. The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin. Adv Cyclic Nucleotide Res. 1972;1:91–101. [PubMed] [Google Scholar]
- Exton J. H., Robison G. A., Sutherland E. W., Park C. R. Studies on the role of adenosine 3',5'-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem. 1971 Oct 25;246(20):6166–6177. [PubMed] [Google Scholar]
- Fisher R. B., O'Brien J. A. The effects of endogenous and added insulin on the time-course of glucose uptake by the isolated perfused rat heart. Q J Exp Physiol Cogn Med Sci. 1972 Apr;57(2):176–191. doi: 10.1113/expphysiol.1972.sp002147. [DOI] [PubMed] [Google Scholar]
- Laraia P. J., Reddy W. Hormonal regulation of myocardial adenosine 3',5'-monophosphate. Biochim Biophys Acta. 1969 Apr 1;177(2):189–195. doi: 10.1016/0304-4165(69)90127-5. [DOI] [PubMed] [Google Scholar]
- Liljenquist J. E., Bomboy J. D., Lewis S. B., Sinclair-Smith B. C., Felts P. W., Lacy W. W., Crofford O. B., Liddle G. W. Effect of glucagon on net splanchnic cyclic AMP production in normal and diabetic men. J Clin Invest. 1974 Jan;53(1):198–204. doi: 10.1172/JCI107538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oye I. Cyclic AMP and its relation to clinical chemistry. Scand J Clin Lab Invest. 1973 Nov;32(3):189–192. [PubMed] [Google Scholar]
- Oye I., Langslet A. The role of cyclic AMP in the inotropic response to isoprenaline and glucagon. Adv Cyclic Nucleotide Res. 1972;1:291–300. [PubMed] [Google Scholar]
- Sobel B. E., Mayer S. E. Cyclic adenosine monophosphate and cardiac contractility. Circ Res. 1973 Apr;32(4):407–414. doi: 10.1161/01.res.32.4.407. [DOI] [PubMed] [Google Scholar]
- Strange R. C., Mjos O. D. The sources of plasma cyclic AMP: studies in the rat using isoprenaline, nicotinic acid and glucagon. Eur J Clin Invest. 1975 Apr;5(2):147–152. doi: 10.1111/j.1365-2362.1975.tb00440.x. [DOI] [PubMed] [Google Scholar]
- Williamson J. R. Metabolic effects of epinephrine in the perfused rat heart. II. Control steps of glucose and glycogen metabolism. Mol Pharmacol. 1966 May;2(3):206–220. [PubMed] [Google Scholar]