Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Dec;152(3):477–484. doi: 10.1042/bj1520477

Short-chain fatty acid synthesis in brain. Subcellular localization and changes during development.

G L Reijnierse, H Veldstra, C J Van der Ber
PMCID: PMC1172499  PMID: 5995

Abstract

Acetyl-CoA synthase (EC 6.2.1.1), Propionyl-CoA synthase (EC 6.2.1.-) and butyryl-CoA synthase (EC 6.2.1.2) were measured in subcellular fractions prepared by primary and density-gradient fractionation from adult rat brain by a method resulting in recoveries close to 100%. Most of the activity of the three enzymes was recovered in the crude mitochondrial fraction. On subfractionation of this crude mitochondrial fraction with continuous sucrose density gradients, most of the activity of the three enzymes was found at a higher density than NAD+-isocitrate dehydrogenase and at about the same density as glutamate dehydrogenase, confirming earlier reported data for acetyl-CoA synthase. The finding that propionyl-CoA synthase and butyryl-CoA synthase had about the same distribution in the gradients as acetyl-CoA synthase adds support to the hypothesis that mitochondria involved in the metabolism of these short-chain fatty acids (all three of which have been shown to result in a rapid and high labelling of glutamine in vivo) form a distinct subpopulation of the total mitochondrial population. The three synthase activities were found to differ from each other in their rate of change and their subcellular localization during rat brain development. This, in combination with the observation that in gradients of adult brain preparations the three activities did not completely overlap, suggests that the three synthase activities are not present in the same proportion to each other in the same subpopulation (s) of mitochondria in the brain.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aas M. Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim Biophys Acta. 1971 Feb 2;231(1):32–47. doi: 10.1016/0005-2760(71)90253-0. [DOI] [PubMed] [Google Scholar]
  2. Anderson A. D., Erwin V. G. Brain acyl-coenzyme A hydrolase: distribution, purification and properties. J Neurochem. 1971 Jul;18(7):1179–1186. doi: 10.1111/j.1471-4159.1971.tb00216.x. [DOI] [PubMed] [Google Scholar]
  3. BERL S. COMPARTMENTATION OF GLUTAMIC ACID METABOLISM IN DEVELOPING CEREBRAL CORTEX. J Biol Chem. 1965 May;240:2047–2054. [PubMed] [Google Scholar]
  4. Barth C., Sladek M., Decker K. The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim Biophys Acta. 1971 Oct 5;248(1):24–33. doi: 10.1016/0005-2760(71)90071-3. [DOI] [PubMed] [Google Scholar]
  5. Blokhuis G. G.D., Veldstra H. Heterogeneity of mitochondria in rat brain. FEBS Lett. 1970 Dec;11(3):197–199. doi: 10.1016/0014-5793(70)80527-0. [DOI] [PubMed] [Google Scholar]
  6. Buckley B. M., Williamson D. H. Acetoacetate and brain lipogenesis: developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain. Biochem J. 1973 Mar;132(3):653–656. doi: 10.1042/bj1320653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cremer J. E., Lucas H. M. Sodium pentobarbitone and metabolic compartments in rat brain. Brain Res. 1971 Dec 24;35(2):619–621. doi: 10.1016/0006-8993(71)90514-2. [DOI] [PubMed] [Google Scholar]
  8. Dhopeshwarkar G. A., Mead J. F. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv Lipid Res. 1973;11(0):109–142. doi: 10.1016/b978-0-12-024911-4.50010-6. [DOI] [PubMed] [Google Scholar]
  9. Gonda O., Quastel J. H. Transport and metabolism of acetate in rat brain cortex in vitro. Biochem J. 1966 Jul;100(1):83–94. doi: 10.1042/bj1000083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawkins R. A., Miller A. L., Cremer J. E., Veech R. L. Measurement of the rate of glucose utilization by rat brain in vivo. J Neurochem. 1974 Nov;23(5):917–923. doi: 10.1111/j.1471-4159.1974.tb10743.x. [DOI] [PubMed] [Google Scholar]
  11. Jenden D. J., Choi L., Silverman R. W., Steinborn J. A., Roch M., Booth R. A. Acetylcholine turnover estimation in brain by gas chromatography-mass spectrometry. Life Sci. 1974 Jan 1;14(1):55–63. doi: 10.1016/0024-3205(74)90245-8. [DOI] [PubMed] [Google Scholar]
  12. Kishimoto Y., Radin N. S. Metabolism of brain glycolipid fatty acids. Lipids. 1966 Jan;1(1):47–61. doi: 10.1007/BF02668124. [DOI] [PubMed] [Google Scholar]
  13. Krebs H. A., Johnson W. A. Metabolism of ketonic acids in animal tissues. Biochem J. 1937 Apr;31(4):645–660. doi: 10.1042/bj0310645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Neidle A., van den Berg C. J., Grynbaum A. The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients. J Neurochem. 1969 Feb;16(2):225–234. doi: 10.1111/j.1471-4159.1969.tb05940.x. [DOI] [PubMed] [Google Scholar]
  16. O'Neal R. M., Koeppe R. E. Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J Neurochem. 1966 Sep;13(9):835–847. doi: 10.1111/j.1471-4159.1966.tb05879.x. [DOI] [PubMed] [Google Scholar]
  17. O'neal R. M., Koeppe R. E., Williams E. I. Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids. Biochem J. 1966 Dec;101(3):591–597. doi: 10.1042/bj1010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Patel A. J., Balázs R. Manifestation of metabolic compartmentation during the maturation of the rat brain. J Neurochem. 1970 Jul;17(7):955–971. doi: 10.1111/j.1471-4159.1970.tb02249.x. [DOI] [PubMed] [Google Scholar]
  19. Patel A. J., Balázs R. Manifestation of metabolic compartmentation during the maturation of the rat brain. J Neurochem. 1970 Jul;17(7):955–971. doi: 10.1111/j.1471-4159.1970.tb02249.x. [DOI] [PubMed] [Google Scholar]
  20. Quastel J. H., Wheatley A. H. Oxidations by the brain. Biochem J. 1932;26(3):725–744. doi: 10.1042/bj0260725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reijnierse G. L., Veldstra H., Van den Berg C. J. Subcellular localization of gamma-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Evidence for at least two small glutamate compartments in brain. Biochem J. 1975 Dec;152(3):469–475. doi: 10.1042/bj1520469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SCHUBERTH J. ON THE BIOSYNTHESIS OF ACETYL COENZYME A IN THE BRAIN. I. THE ENZYMIC FORMATION OF ACETYL COENZYME A FROM ACETATE, ADENOSINE TRIPHOSPHATE AND COENZYME A. Biochim Biophys Acta. 1965 Feb 1;98:1–7. doi: 10.1016/0005-2760(65)90002-0. [DOI] [PubMed] [Google Scholar]
  23. Salganicoff L., Koeppe R. E. Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J Biol Chem. 1968 Jun 25;243(12):3416–3420. [PubMed] [Google Scholar]
  24. Scholte H. R., Wit-Peeters E. M., Bakker J. C. The intracellular and intramitochondrial distribution of short-chain acyl-CoA synthetases in guinea-pig heart. Biochim Biophys Acta. 1971 May 4;231(3):479–486. doi: 10.1016/0005-2760(71)90115-9. [DOI] [PubMed] [Google Scholar]
  25. Tencati J. R., Rosenberg R. N. A radioisotopic, chromatographic microassay for acetyl-coenzyme A synthetase and some preliminary studies on the rat brain enzyme. Biochim Biophys Acta. 1973 Feb 15;293(2):542–551. doi: 10.1016/0005-2744(73)90361-6. [DOI] [PubMed] [Google Scholar]
  26. Tucek S. Subcellular distribution of acetyl-CoA synthetase, ATP citrate lyase, citrate synthase, choline acetyltransferase, fumarate hydratase and lactate dehydrogenase in mammalian brain tissue. J Neurochem. 1967 May;14(5):531–545. doi: 10.1111/j.1471-4159.1967.tb09552.x. [DOI] [PubMed] [Google Scholar]
  27. Van den Berg C. J., Krzalić L., Mela P., Waelsch H. Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J. 1969 Jun;113(2):281–290. doi: 10.1042/bj1130281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
  29. van Kempen G. M., van den Berg C. J., van der Helm H. J., Veldstra H. Intracellular localization of glutamate decarboxylase, gamma-aminobutyrate transaminase and some other enzymes in brain tissue. J Neurochem. 1965 Jul;12(7):581–588. doi: 10.1111/j.1471-4159.1965.tb04250.x. [DOI] [PubMed] [Google Scholar]
  30. van den Berg C. J., Garfinkel D. A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J. 1971 Jun;123(2):211–218. doi: 10.1042/bj1230211. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES