Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1975 Dec;152(3):661–666. doi: 10.1042/bj1520661

The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies.

C Berne
PMCID: PMC1172521  PMID: 776173

Abstract

The rate of oxidation of 14C-labelled fatty acids and of ketone bodies was measured in isolated pancreatic islets of obese-hyperglycaemic mice (ob/ob). The following main observations were made. 1. Octanoate, palmitate and oleate were all converted into CO2 by the pancreatic islets. Octanoate was oxidized with the highest rate followed by palmitate and oleate. 2. The rate of oxidation of 0.7 mM-palmitate was 3.1 pmol/h per mug drug weight. This was decreased by 50% in the presence of 16.7 mM-glucose. The rate of palmitate oxidation was also inhibited by 2-bromostearate. The palmitate oxidation showed a concentration-dependent increase, which was most marked between 0.25 and 1.0 mM. 3. Octanoate (5 mM) had no effect on the rate of oxidation of 3.3 mM- glucose. 4. Acetoacetate (5 mM) and D-3-hydroxybutyrate (5 mM) were oxidized at rates of 5.9 and 5.4 pmol/h per mug dry weight respectively. These rates were less than 10% of those found in kidney-cortex slices. The magnitude of the oxidation rates found for fatty acids and for ketone bodies suggest that these substrates represent important metabolic fuels for the pancreatic B-cells.

Full text

PDF
661

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. R., Dade E., Elliott J., Hems D. A. Hormonal control of intermediary metabolism in obese hyperglycemic mice. II. Levels of plasma free fatty acid and immunoreactive insulin and liver glycogen. Diabetes. 1971 Aug;20(8):535–541. doi: 10.2337/diab.20.8.535. [DOI] [PubMed] [Google Scholar]
  2. Andersson A. Long-term effects of glucose on insulin release and glucose oxidation by mouse pancreatic islets maintained in tissue culture. Biochem J. 1974 Jun;140(3):377–382. doi: 10.1042/bj1400377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berne C. The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J. 1975 Dec;152(3):667–673. doi: 10.1042/bj1520667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Björntorp P. Rates of oxidation of different fatty acids by isolated rat liver mitochondria. J Biol Chem. 1968 May 10;243(9):2130–2133. [PubMed] [Google Scholar]
  6. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  7. Cole E. H., Logothetopoulos J. Glucose oxidation (14-CO2 production)and insulin secretion by pancreatic islets isolated from hyperglycemic and normoglycemic rats. Diabetes. 1974 May;23(5):469–473. doi: 10.2337/diab.23.5.469. [DOI] [PubMed] [Google Scholar]
  8. Coore H. G., Randle P. J. Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem J. 1964 Oct;93(1):66–78. doi: 10.1042/bj0930066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crespin S. R., Greenough W. B., 3rd, Steinberg D. Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. J Clin Invest. 1973 Aug;52(8):1979–1984. doi: 10.1172/JCI107382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards J. C., Hellerström C., Petersson B., Taylor K. W. Oxidation of glucose and fatty acids in normal and in A 2 -cell rich pancreatic islets isolated from guinea-pigs. Diabetologia. 1972 Apr;8(2):93–98. doi: 10.1007/BF01235632. [DOI] [PubMed] [Google Scholar]
  11. FRITZ I. B. Factors influencing the rates of long-chain fatty acid oxidation and synthesis in mammalian systems. Physiol Rev. 1961 Jan;41:52–129. doi: 10.1152/physrev.1961.41.1.52. [DOI] [PubMed] [Google Scholar]
  12. Fischel P., Oette K. Experimentelle Untersuchungen an menschlichen Leberpunktaten und Rattenleberschnitten zur Oxidation von Fettsäuren mit unterschiedlicher Kettenlänge und unterschiedlicher Zahl von Doppelbindungen. Res Exp Med (Berl) 1974;163(1):1–16. doi: 10.1007/BF01851441. [DOI] [PubMed] [Google Scholar]
  13. GEPTS W., CHRISTOPHE J., MAYER J. Pancreatic islets in mice with the obese-hyperglycemic syndrome: lack of effect of carbutamide. Diabetes. 1960 Jan-Feb;9:63–69. doi: 10.2337/diab.9.1.63. [DOI] [PubMed] [Google Scholar]
  14. GRODSKY G. M., BATTS A. A., BENNETT L. L., VCELLA C., MCWILLIAMS N. B., SMITH D. F. EFFECTS OF CARBOHYDRATES ON SECRETION OF INSULIN FROM ISOLATED RAT PANCREAS. Am J Physiol. 1963 Oct;205:638–644. doi: 10.1152/ajplegacy.1963.205.4.638. [DOI] [PubMed] [Google Scholar]
  15. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goberna R., Tamarit J., Jr, Osorio J., Fussgänger R., Tamarit J., Pfeiffer E. F. Action of B-hydroxy butyrate, acetoacetate and palmitate on the insulin release in the perfused isolated rat pancreas. Horm Metab Res. 1974 Jul;6(4):256–260. doi: 10.1055/s-0028-1093862. [DOI] [PubMed] [Google Scholar]
  17. HELLMAN B. The occurrence of argyrophil cells in the islets of Langerhans of American obese-hyperglycaemic mice. Acta Endocrinol (Copenh) 1961 Apr;36:596–602. doi: 10.1530/acta.0.0360596. [DOI] [PubMed] [Google Scholar]
  18. Hammar H., Berne C. The activity of beta-hydroxyacyl-CoA dehydrogenase in the pancreatic islets of hyperglycaemic mice. Diabetologia. 1970 Oct;6(5):526–528. doi: 10.1007/BF01211896. [DOI] [PubMed] [Google Scholar]
  19. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. Iodoacetamide-induced sensitization of the pancreatic beta-cells to glucose stimulation. Biochem J. 1973 Apr;132(4):775–789. doi: 10.1042/bj1320775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic beta-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem J. 1974 Jan;138(1):33–45. doi: 10.1042/bj1380033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hellman B., Idahl L. A. Pancreatic islet levels of citrate under conditions of stimulated and inhibited insulin release. Diabetes. 1972 Oct;21(10):999–1002. doi: 10.2337/diab.21.10.999. [DOI] [PubMed] [Google Scholar]
  22. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose and other modifiers of insulin release on the oxidative metabolism of amino acids in micro-dissected pancreatic islets. Biochem J. 1971 Jul;123(4):513–521. doi: 10.1042/bj1230513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
  24. Howell S. L., Taylor K. W. Potassium ions and the secretion of insulin by islets of Langerhans incubated in vitro. Biochem J. 1968 Jun;108(1):17–24. doi: 10.1042/bj1080017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. KEEN H., FIELD J. B., PASTAN I. H. A simple method for in vitro metabolic studies using small volumes of tissue and medium. Metabolism. 1963 Feb;12:143–147. [PubMed] [Google Scholar]
  26. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  27. Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  28. Lernmark A. [Isolated mouse islets as a model for studying insulin release]. Acta Diabetol Lat. 1971 Jul-Aug;8(4):649–679. doi: 10.1007/BF01550894. [DOI] [PubMed] [Google Scholar]
  29. Linscheer W. G., Slone D., Chalmers T. C. Effects of octanoic acid on serum-levels of free fatty acids, insulin, and glucose in patients with cirrhosis and in healthy volunteers. Lancet. 1967 Mar 18;1(7490):593–597. doi: 10.1016/s0140-6736(67)90443-6. [DOI] [PubMed] [Google Scholar]
  30. MERLEVEDE W., WEAVER G., LANDAU B. R. Effects of thyrotropic hormone on carbohydrate metabolism in thyroid slices. J Clin Invest. 1963 Jul;42:1160–1171. doi: 10.1172/JCI104801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. MOSKALEWSKI S. ISOLATION AND CULTURE OF THE ISLETS OF LANGERHANS OF THE GUINEA PIG. Gen Comp Endocrinol. 1965 Jun;5:342–353. doi: 10.1016/0016-6480(65)90059-6. [DOI] [PubMed] [Google Scholar]
  32. Malaisse W. J., Malaisse-Lagae F. Stimulation of insulin secretion by noncarbohydrate metabolites. J Lab Clin Med. 1968 Sep;72(3):438–448. [PubMed] [Google Scholar]
  33. Montague W., Taylor K. W. Regulation of insulin secretion by short chain fatty acids. Nature. 1968 Mar 2;217(5131):853–853. doi: 10.1038/217853a0. [DOI] [PubMed] [Google Scholar]
  34. Ontko J. A. Metabolism of free fatty acids in isolated liver cells. Factors affecting the partition between esterification and oxidation. J Biol Chem. 1972 Mar 25;247(6):1788–1800. [PubMed] [Google Scholar]
  35. Randle P. J. Apparent reversal of insulin resistance in cardiac muscle in alloxan-diabetes by 2-bromostearate. Nature. 1969 Feb 22;221(5182):777–777. doi: 10.1038/221777a0. [DOI] [PubMed] [Google Scholar]
  36. Randle P. J., Garland P. B., Newsholme E. A., Hales C. N. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci. 1965 Oct 8;131(1):324–333. doi: 10.1111/j.1749-6632.1965.tb34800.x. [DOI] [PubMed] [Google Scholar]
  37. Sanbar S. S., Martin J. M. Stimulation by octanoate of insulin release from isolated rat pancreas. Metabolism. 1967 May;16(5):482–484. doi: 10.1016/0026-0495(67)90140-0. [DOI] [PubMed] [Google Scholar]
  38. Schalch D. S., Kipnis D. M. Abnormalities in carbohydrate tolerance associated with elevated plasma nonesterified fatty acids. J Clin Invest. 1965 Dec;44(12):2010–2020. doi: 10.1172/JCI105308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spector A. A., Steinberg D. The utilization of unesterified palmitate by Ehrlich ascites tumor cells. J Biol Chem. 1965 Oct;240(10):3747–3753. [PubMed] [Google Scholar]
  40. Weidemann M. J., Krebs H. A. The fuel of respiration of rat kidney cortex. Biochem J. 1969 Apr;112(2):149–166. doi: 10.1042/bj1120149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Westman S. Development of the obese-hyperglycaemic syndrome in mice. Diabetologia. 1968 Jun;4(3):141–149. doi: 10.1007/BF01219435. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES