Abstract
Interaction between Escherichia coli RNA polymerase and its substrates, the nucleoside triphosphates, was studied by gel-filtration and dialysis-rate-measurement techniques. 2. The holoenzyme bound variable amounts of ATP and GTP. There was no correlation between substrate-binding ability and enzyme activity of different enzyme preparations. 3. The core enzyme bound a maximum of 0.1 mol of ATP/mol of enzyme. The dissociation constant of this interaction was of the order of 1 X 10(-5)M. The core enzyme did not bind GTP. 4. A protein of mol.wt. 60000, which was eluted in the first fraction during phosphocellulose column chromatography of the holoenzyme, bound appreciable amounts of ATP. The dissociation constant of this interaction was of the order of 3 X 10(-5)-5 X 10(-6)M. 5. Evidence presented shows that this protein, and not the sigma factor, is responsible for the observed variation in the ATP-binding ability of the holoenzyme.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham K. A., Andersen K. J., Rognes A. Studies on deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Variations of the enzyme activity during growth. Biochem J. 1972 Sep;129(2):291–299. doi: 10.1042/bj1290291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abraham K. A. Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem. 1968 Jun;5(1):143–146. doi: 10.1111/j.1432-1033.1968.tb00348.x. [DOI] [PubMed] [Google Scholar]
- Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
- Burgess R. R. RNA polymerase. Annu Rev Biochem. 1971;40:711–740. doi: 10.1146/annurev.bi.40.070171.003431. [DOI] [PubMed] [Google Scholar]
- Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
- CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers D. A., Zubay G. The stimulatory effect of cyclic adenosine 3'5'-monophosphate on DNA-directed synthesis of beta-galactosidase in a cell-free system. Proc Natl Acad Sci U S A. 1969 May;63(1):118–122. doi: 10.1073/pnas.63.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colowick S. P., Womack F. C. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem. 1969 Feb 25;244(4):774–777. [PubMed] [Google Scholar]
- Davison J., Pilarski L. M., Echols H. A factor that stimulates RNA synthesis by purified RNA polymerase. Proc Natl Acad Sci U S A. 1969 May;63(1):168–174. doi: 10.1073/pnas.63.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda R., Iwakura Y., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. I. A new holoenzyme containing a new sigma factor. J Mol Biol. 1974 Mar;83(3):353–367. doi: 10.1016/0022-2836(74)90284-8. [DOI] [PubMed] [Google Scholar]
- HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
- Ishihama A., Hurwitz J. The role of deoxyribonucleic acid in ribonucleic acid synthesis. XVII. Multiple active sites of Escherichia coli ribonucleic acid polymerase. J Biol Chem. 1969 Dec 25;244(24):6680–6689. [PubMed] [Google Scholar]
- Ishihama A. Subunits of ribonucleic acid polymerase in function and structure. I. Reversible dissociations of Escherichia coli ribonucleic acid polymerase. Biochemistry. 1972 Mar 28;11(7):1250–1258. doi: 10.1021/bi00757a021. [DOI] [PubMed] [Google Scholar]
- Iwakura Y., Fukuda R., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. II. Polyadenylate-polyuridylate synthesis by holoenzyme II. J Mol Biol. 1974 Mar;83(3):369–378. doi: 10.1016/0022-2836(74)90285-x. [DOI] [PubMed] [Google Scholar]
- King A. M., Lowe P. A., Nicholson B. H. Trypsin modification of DNA-dependent RNA Polymerase of E coli B. Biochem Biophys Res Commun. 1974 Jul 10;59(1):38–43. doi: 10.1016/s0006-291x(74)80170-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lill H. R., Hartmann G. R. Digestion with matrix-bound proteases as a possible probe for the topography of the DNA-dependent RNA polymerase from Escherichia coli. Eur J Biochem. 1975 May;54(1):45–53. doi: 10.1111/j.1432-1033.1975.tb04112.x. [DOI] [PubMed] [Google Scholar]
- Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
- Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
- Travers A. A., Kamen R. I., Schleif R. F. Factor necessary for ribosomal RNA synthesis. Nature. 1970 Nov 21;228(5273):748–751. doi: 10.1038/228748a0. [DOI] [PubMed] [Google Scholar]
- Wickner W., Kornberg A. A novel form of RNA polymerase from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4425–4428. doi: 10.1073/pnas.71.11.4425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu C. W., Goldthwait D. A. Studies of nucleotide binding to the ribonucleic acid polymerase by equilibrium dialysis. Biochemistry. 1969 Nov;8(11):4458–4464. doi: 10.1021/bi00839a035. [DOI] [PubMed] [Google Scholar]
