Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Feb 1;153(2):151–157. doi: 10.1042/bj1530151

Influence of complexing agents on stability and activity.

B P Ackermann, J Ahlers
PMCID: PMC1172557  PMID: 819004

Abstract

Metal ion-complexing agents, like KCN, EDTA etc., inactivate alkaline phosphatase of pig kidney. This inactivation is reversible at low concentrations of the complexing agents and irreversible at high concentrations. The reversible inhibition is probably due to removal of Zn2+ ions from the active site, where they are necessary for catalytic action, whereas the irreversible inhibition results from the removal of Zn2+ ions necessary for preservation of the structure. The inactivation is pseudo-first order. It depends on the concentration, size and charge of the complexing agents. Beta-Glycerophosphate and Mg2+ ions protect the enzyme from inactivation by complexing agents. Quantitative examination of the effect of substrate leads to a model that is similar to the "sequential model" proposed by D.E. Koshland, G. Nemethy & D. Filmer (1966) (Biochemistry 5, 365-385) to explain allosteric behavior of enzymes. It describes the sequential addition of two substrate molecules at two active centres of the dimer enzyme. The binding of the substrate molecules is accompanied by changes in the conformation, which lead to stabilization of the enzyme against attack by complexing agents.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agus S. G., Cox R. P., Griffin M. J. Inhibition of alkaline phosphatase by cysteine and its analogues. Biochim Biophys Acta. 1966 May 5;118(2):363–370. doi: 10.1016/s0926-6593(66)80045-0. [DOI] [PubMed] [Google Scholar]
  2. Ahlers J. Kinetics of alkaline phosphatase from pig kidney. Mechanism of activation by magnesium ions. Biochem J. 1974 Jul;141(1):257–263. doi: 10.1042/bj1410257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahlers J. The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase. Biochem J. 1975 Sep;149(3):535–546. doi: 10.1042/bj1490535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bramley T. A. Ethylenediamine-NN'-tetra-acetate-dependent amino acid-stimulated inactivation of mouse ovarian alkaline phosphatase activity. Biochem J. 1975 May;147(2):259–265. doi: 10.1042/bj1470259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand K., Deckner K., Musil J. Enzyme pattern of the pentose phosphate pathway in ascites tumor cells and the effect of nucleoside triphosphates on its enzyme activities. Hoppe Seylers Z Physiol Chem. 1970 Feb;351(2):213–220. doi: 10.1515/bchm2.1970.351.1.213. [DOI] [PubMed] [Google Scholar]
  6. Brunel C., Cathala G. Activation and inhibition processes of alkaline phosphatase from bovine brain by metal ions (Mg 2+ and Zn 2+ ). Biochim Biophys Acta. 1973 May 5;309(1):104–115. doi: 10.1016/0005-2744(73)90322-7. [DOI] [PubMed] [Google Scholar]
  7. Butterworth P. J. The reversible inactivation of pig kidney alkaline phosphatase at low pH. Biochem J. 1968 Jun;108(2):243–246. doi: 10.1042/bj1080243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conyers R. A., Birkett D. J., Neale F. C., Posen S., Brudenell-Woods J. The action of EDTA on human alkaline phosphatases. Biochim Biophys Acta. 1967 Jul 11;139(2):363–371. doi: 10.1016/0005-2744(67)90040-x. [DOI] [PubMed] [Google Scholar]
  9. Csopak H., Szajn H. Factors affecting the zinc content of E. coli alkaline phosphatase. Arch Biochem Biophys. 1973 Aug;157(2):374–379. doi: 10.1016/0003-9861(73)90652-8. [DOI] [PubMed] [Google Scholar]
  10. Fosset M., Chappelet-Tordo D., Lazdunski M. Intestinal alkaline phosphatase. Physical properties and quaternary structure. Biochemistry. 1974 Apr 23;13(9):1783–1788. doi: 10.1021/bi00706a001. [DOI] [PubMed] [Google Scholar]
  11. Hiwada K., Wachsmuth E. D. Catalytic properties of alkaline phosphatase from pig kidney. Biochem J. 1974 Jul;141(1):283–291. doi: 10.1042/bj1410283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lazdunski C., Lazdunski M. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study. Eur J Biochem. 1969 Jan;7(2):294–300. doi: 10.1111/j.1432-1033.1969.tb19606.x. [DOI] [PubMed] [Google Scholar]
  16. Lazdunski C., Petitclerc C., Lazdunski M. Structure-function relationships for some metalloalkaline phosphatases of E. coli. Eur J Biochem. 1969 Apr;8(4):510–517. doi: 10.1111/j.1432-1033.1969.tb00556.x. [DOI] [PubMed] [Google Scholar]
  17. Petitclerc C., Lazdunski C., Chappelet D., Moulin A., Lazdunski M. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms. Eur J Biochem. 1970 Jun;14(2):301–308. doi: 10.1111/j.1432-1033.1970.tb00290.x. [DOI] [PubMed] [Google Scholar]
  18. Schüssler H. Uber die chromatographische Auftrennung sowie Aktivierung und Inaktivierung der alkalischen Phosphatase aus Hühnerdarm. Biochim Biophys Acta. 1968 Feb 5;151(2):383–393. doi: 10.1016/0005-2744(68)90105-8. [DOI] [PubMed] [Google Scholar]
  19. Simpson R. T., Vallee B. L. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli. Biochemistry. 1968 Dec;7(12):4343–4350. doi: 10.1021/bi00852a029. [DOI] [PubMed] [Google Scholar]
  20. Trotman C. N., Greenwood C. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase. Biochem J. 1971 Aug;124(1):25–30. doi: 10.1042/bj1240025. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES