Abstract
1. Analysis of bile salts of four snakes of the subfamily Viperinae showed that their bile acids consisted mainly of C-23-hydroxylated bile acids. 2. Incubations of 14C-labelled sodium cholate (3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oate) and deoxycholate (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oate) with whole and fractionated adder liver homogenates were carried out in the presence of molecular oxygen and NADPH or an NADPH-generating system. The formation of C-23-hydroxylated bile acids, namely bitocholic acid (3 alpha, 12 alpha, 23xi-trihydroxy-5 beta-cholan-24-oic acid) and 3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-cholanic acid (3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-5 beta-cholan-24-oic acid), was observed mainly in the microsomal fraction and partly in the mitochondrial fraction. 3. Biosynthetic pathways of C-23-hydroxylated bile acids are discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson I. G., Haslewood G. A. Comparative studies of bile salts. 5 alpha-Chimaerol, a new bile alcohol from the white sucker Catostomus commersoni Lacépède. Biochem J. 1970 Feb;116(4):581–585. doi: 10.1042/bj1160581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson I. G., Haslewood G. A., Oldham R. S., Amos B., Tökés L. A more detailed study of bile salt evolution, including techniques for small-scale identification and their application to amphibian biles. Biochem J. 1974 Aug;141(2):485–494. doi: 10.1042/bj1410485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERGSTROM S., DANIELSSON H., KAZUNO T. Bile acids and steroids. 98. The metabolism of bile acids in python and constrictor snakes. J Biol Chem. 1960 Apr;235:983–988. [PubMed] [Google Scholar]
- Björkhem I., Gustafsson J. Omega-hydroxylation of steriod side-chain in biosynthesis of bile acids. Eur J Biochem. 1973 Jul 2;36(1):201–212. doi: 10.1111/j.1432-1033.1973.tb02902.x. [DOI] [PubMed] [Google Scholar]
- DANIELSSON H., ENEROTH P., HELLSTROM K., SJOVALL J. Synthesis of some 3beta-hydroxylated bile acids and the isolation of 3beta, 12alpha-dihydroxy-5beta-cholanic acid from feces. J Biol Chem. 1962 Dec;237:3657–3659. [PubMed] [Google Scholar]
- ENEROTH P. THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS. J Lipid Res. 1963 Jan;4:11–16. [PubMed] [Google Scholar]
- Einarsson K., Johansson G. Effect of carbon monoxide and phenobarbital on hydroxylation of bile acids by rat liver microsomes. FEBS Lett. 1969 Aug;4(3):177–180. doi: 10.1016/0014-5793(69)80228-0. [DOI] [PubMed] [Google Scholar]
- Eneroth P., Gordon B., Sjövall J. Characterization of trisubstituted cholanoic acids in human feces. J Lipid Res. 1966 Jul;7(4):524–530. [PubMed] [Google Scholar]
- HASLEWOOD G. A. D., WOOTTON V. Comparative studies of 'bile salts'; preliminary survey. Biochem J. 1950 Nov-Dec;47(5):584–597. doi: 10.1042/bj0470584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASLEWOOD G. A. Comparative studies of 'bile salts'. 13. Bile acids of the leopard seal, Hydrurga leptonyx, and of two snakes of the genus Bitis. Biochem J. 1961 Feb;78:352–359. doi: 10.1042/bj0780352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haslewood G. A. Bile salt evolution. J Lipid Res. 1967 Nov;8(6):535–550. [PubMed] [Google Scholar]
- Haslewood G. A. Metabolism of steroids: 4. Ketonic acids derived from cholic acid. Biochem J. 1944;38(1):108–111. doi: 10.1042/bj0380108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikawa S., Ayaki Y., Ogura M., Yamasaki K. The metabolism in vivo and in vitro of 3-oxo-7 -hydroxychol-4-enoic acid-24- 14 C as an intermediate of chenodeoxycholic acid biogenesis. J Biochem. 1972 Apr;71(4):579–587. [PubMed] [Google Scholar]
- KUFF E. L., SCHNEIDER W. C. Intracellular distribution of enzymes. XII. Biochemical heterogeneity of mitochondria. J Biol Chem. 1954 Feb;206(2):677–685. [PubMed] [Google Scholar]
- Kallner A. A method of synthesis of allocholanoic acids. Bile acids and steroids 182. Acta Chem Scand. 1967;21(2):322–328. doi: 10.3891/acta.chem.scand.21-0322. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- THOMAS P. J., HSIA S. L., MATSCHINER J. T., DOISY E. A., Jr, ELLIOTT W. H., THAYER S. A., DOISY E. A. BILE ACIDS. XIX. METABOLISM OF LITHOCHOLIC ACID-24-14C IN THE RAT. J Biol Chem. 1964 Jan;239:102–105. [PubMed] [Google Scholar]
- TOMKINS G. M. A mammalian 3alpha-hydroxysteroid dehydrogenase. J Biol Chem. 1956 Jan;218(1):437–447. [PubMed] [Google Scholar]
- USUI T. THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS WITH SPECIAL REFERENCE TO SEPARATION OF KETO BILE ACIDS. J Biochem. 1963 Sep;54:283–286. doi: 10.1093/oxfordjournals.jbchem.a127785. [DOI] [PubMed] [Google Scholar]
- WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
- Yamasaki K., Ikawa S., Kinoshita D., Usui T. Enzymatic 7-beta-hydroxlation of 3-beta-hydroxychol-5-enoic acid. Yonago Acta Med. 1967 Oct;11(3):159–164. [PubMed] [Google Scholar]