Abstract
1. Changes in the activities of several enzymes involved in mitochondrial fatty acid oxidation were measured in livers of developing rats between late foetal life and maturity. The enzymes studied are medium- and long-chain ATP-dependent acyl-CoA synthetases of the outer mitochondrial membrane and matrix, GTP-dependent acyl-CoA synthetase, carnitine acyltransferase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, general 3-oxoacyl-CoA thiolase and acetoacetyl-CoA thiolase.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aas M. Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim Biophys Acta. 1971 Feb 2;231(1):32–47. doi: 10.1016/0005-2760(71)90253-0. [DOI] [PubMed] [Google Scholar]
- Augenfeld J., Fritz I. B. Carnitine palmitolyltransferase activity and fatty acid oxidation by livers from fetal and neonatal rats. Can J Biochem. 1970 Mar;48(3):288–294. doi: 10.1139/o70-050. [DOI] [PubMed] [Google Scholar]
- BEAUFAY H., BENDALL D. S., BAUDHUIN P., DE DUVE C. Tissue fractionation studies. 12. Intracellular distribution of some dehydrogenases, alkaline deoxyribonuclease and iron in rat-liver tissue. Biochem J. 1959 Dec;73:623–628. doi: 10.1042/bj0730623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey E., Lockwood E. A. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat. Enzyme. 1973;15(1):239–253. [PubMed] [Google Scholar]
- Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartová A. Functioning of the hypothalamo-pituitary-adrenal system during postnatal development in rats. Gen Comp Endocrinol. 1968 Apr;10(2):235–239. doi: 10.1016/0016-6480(68)90030-0. [DOI] [PubMed] [Google Scholar]
- Bieber L. L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972 Dec;50(2):509–518. doi: 10.1016/0003-2697(72)90061-9. [DOI] [PubMed] [Google Scholar]
- Bunyan P. J., Greenbaum A. L. The effect of treatment of rats with pituitary growth hormone on the activities of some enzymes involved in fatty acid degradation and synthesis. Biochem J. 1965 Aug;96(2):432–438. doi: 10.1042/bj0960432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
- Dhopeshwarkar G. A., Mead J. F. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv Lipid Res. 1973;11(0):109–142. doi: 10.1016/b978-0-12-024911-4.50010-6. [DOI] [PubMed] [Google Scholar]
- Dierks-Ventling C., Cone A. L. Acetoacetyl--coenzyme A thiolase in brain, liver, and kidney during maturation of the rat. Science. 1971 Apr 23;172(3981):380–382. doi: 10.1126/science.172.3981.380. [DOI] [PubMed] [Google Scholar]
- Drahota Z., Hahn P., Kleinzeller A., Kostolánská A. Acetoacetate formation by liver slices from adult and infant rats. Biochem J. 1964 Oct;93(1):61–65. doi: 10.1042/bj0930061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farstad M., Bremer J., Norum K. R. Long-chain acyl-CoA synthetase in rat liver. A new assay procedure for the enzyme, and studies on its intracellular localization. Biochim Biophys Acta. 1967 Mar 15;132(2):492–502. doi: 10.1016/0005-2744(67)90167-2. [DOI] [PubMed] [Google Scholar]
- Greengard O. Enzymic differentiation in mammalian tissues. Essays Biochem. 1971;7:159–205. [PubMed] [Google Scholar]
- Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huth W., Dierich C., von Oeynhausen V., Seubert W. Multiple mitochondrial forms of acetoacetyl-CoA thiolase in rat liver: possible regulatory role in ketogenesis. Biochem Biophys Res Commun. 1974 Feb 27;56(4):1069–1077. doi: 10.1016/s0006-291x(74)80297-4. [DOI] [PubMed] [Google Scholar]
- Huth W., Dierich C., von Oeynhausen V., Seubert W. On the mechanism of ketogenesis and its control. I. On a possible role of acetoacetyl-CoA thiolase in the control of ketone body production. Hoppe Seylers Z Physiol Chem. 1973 Jun;354(6):635–649. doi: 10.1515/bchm2.1973.354.1.635. [DOI] [PubMed] [Google Scholar]
- Jakovcic S., Haddock J., Getz G. S., Rabinowitz M., Swift H. Mitochondrial development in liver of foetal and newborn rats. Biochem J. 1971 Jan;121(2):341–347. doi: 10.1042/bj1210341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lang C. A., Herbener G. H. Quantitative comparison of the mitochondrial populations in the livers of newborn and weanling rats. Dev Biol. 1972 Oct;29(2):176–182. doi: 10.1016/0012-1606(72)90054-1. [DOI] [PubMed] [Google Scholar]
- Lockwood E. A., Bailey E. Fatty acid utilization during development of the rat. Biochem J. 1970 Nov;120(1):49–54. doi: 10.1042/bj1200049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockwood E. A., Bailey E. The course of ketosis and the activity of key enzymes of ketogenesis and ketone-body utilization during development of the postnatal rat. Biochem J. 1971 Aug;124(1):249–254. doi: 10.1042/bj1240249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNamara D. J., Quackenbush F. W., Rodwell V. W. Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. Developmental pattern. J Biol Chem. 1972 Sep 25;247(18):5805–5810. [PubMed] [Google Scholar]
- Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. doi: 10.1042/bj1320717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norum K. R. Activation of palmityl-coA: carnitine palmityltransferase in livers from fasted, fat-fed, or diabetic rats. Biochim Biophys Acta. 1965 Jun 1;98(3):652–654. doi: 10.1016/0005-2760(65)90166-9. [DOI] [PubMed] [Google Scholar]
- Page M. A., Krebs H. A., Williamson D. H. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem J. 1971 Jan;121(1):49–53. doi: 10.1042/bj1210049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUDMAN D. THE ADIPOKINETIC ACTION OF POLYPEPTIDE AND AMINE HORMONES UPON THE ADIPOSE TISSUE OF VARIOUS ANIMAL SPECIES. J Lipid Res. 1963 Apr;4:119–129. [PubMed] [Google Scholar]
- Samel M. Thyroid function during postnatal development in the rat. Gen Comp Endocrinol. 1968 Apr;10(2):229–234. doi: 10.1016/0016-6480(68)90029-4. [DOI] [PubMed] [Google Scholar]
- Snell K., Walker D. G. Glucose metabolism in the newborn rat. Temporal studies in vivo. Biochem J. 1973 Apr;132(4):739–752. doi: 10.1042/bj1320739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. B., Bailey E., Bartley W. Changes in hepatic lipigenesis during development of the rat. Biochem J. 1967 Nov;105(2):717–722. doi: 10.1042/bj1050717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernon R. G., Walker D. G. Changes in activity of some enzymes involved in glucose utilization and formation in developing rat liver. Biochem J. 1968 Jan;106(2):321–329. doi: 10.1042/bj1060321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshaw J. B. Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biol. 1972 Aug;28(4):537–544. doi: 10.1016/0012-1606(72)90001-2. [DOI] [PubMed] [Google Scholar]
- Waterson R. M., Hill R. L. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem. 1972 Aug 25;247(16):5258–5265. [PubMed] [Google Scholar]
- Williamson D. H., Bates M. W., Krebs H. A. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968 Jul;108(3):353–361. doi: 10.1042/bj1080353. [DOI] [PMC free article] [PubMed] [Google Scholar]