Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Jan 15;154(1):149–158. doi: 10.1042/bj1540149

Lipid biosynthesis in liver slices of the foetal guinea pig.

C T Jones, I K Ashton
PMCID: PMC1172686  PMID: 6015

Abstract

Lipid synthesis as measured by the incorporation of acetate or 3H2O into slices of foetal liver, is much higher than in slices of adult liver and shows a peak at about two-thirds of gestation. At this time the synthesis from glucose was low and reached a peak 10 days later. The changes in the activity of ATP citrate lyase, which mirrored acetate incorporation, and the effect of glucose and pyruvate on acetate corporation into lipid suggests that some of the lipid synthesis occurs via intramitochondrial acetyl-CoA production from acetate. Despite this, lipid synthesis was not inhibited by (-)-hydroxycitrate. The low rate of synthesis from glucose at two-thirds of gestation is ascribed to the low activity of pyruvate carboxylase at this time and a role for a phosphoenolpyruvate carboxykinase in providing oxaloacetate for lipogenesis is proposed. The activity of fatty acid synthetase broadly agreed with the changes in lipid synthesis, whereas the activity of acetyl-CoA carboxylase was barely sufficient to account for the rates of lipid synthesis in vivo. Acetate and short-chain fatty acids are likely to be the major precursors for lipid synthesis in vivo.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson R. W., Ballard F. J. The metabolic fate of the products of citrate cleavage. Adenosine triphosphate-citrate lyase and nicotinamide-adenine dinucleotide phosphate-linked malate dehydrogenase in foetal and adult liver from ruminants and non-ruminants. Biochem J. 1968 Aug;108(5):705–713. doi: 10.1042/bj1080705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEINERT H., GREEN D. E., HELE P., HIFT H., VON KORFF R. W., RAMAKRISHNAN C. V. The acetate activating enzyme system of heart muscle. J Biol Chem. 1953 Jul;203(1):35–45. [PubMed] [Google Scholar]
  3. Ballard F. J., Hanson R. W. Changes in lipid synthesis in rat liver during development. Biochem J. 1967 Mar;102(3):952–958. doi: 10.1042/bj1020952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballard F. J., Hanson R. W. The citrate cleavage pathway and lipogenesis in rat adipose tissue: replenishment of oxaloacetate. J Lipid Res. 1967 Mar;8(2):73–79. [PubMed] [Google Scholar]
  5. Barth C. A., Hackenschmidt H. J., Weis E. E., Decker K. F. Influence of kynuremate on cholesterol and fatty acid synthesis in isolated perfused rat liver. J Biol Chem. 1973 Jan 25;248(2):738–739. [PubMed] [Google Scholar]
  6. Barth C., Sladek M., Decker K. The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim Biophys Acta. 1971 Oct 5;248(1):24–33. doi: 10.1016/0005-2760(71)90071-3. [DOI] [PubMed] [Google Scholar]
  7. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  8. Cheema-Dhadli S., Halperin M. L., Leznoff C. C. Inhibition of enzymes which interact with citrate by (--)hydroxycitrate and 1,2,3,-tricarboxybenzene. Eur J Biochem. 1973 Sep 21;38(1):98–102. doi: 10.1111/j.1432-1033.1973.tb03038.x. [DOI] [PubMed] [Google Scholar]
  9. Clark D. G., Rognstad R., Katz J. Lipogenesis in rat hepatocytes. J Biol Chem. 1974 Apr 10;249(7):2028–2036. [PubMed] [Google Scholar]
  10. Connor W. E., Lin D. S. Placental transfer of cholesterol-4-14C into rabbit and guinea pig fetus. J Lipid Res. 1967 Nov;8(6):558–564. [PubMed] [Google Scholar]
  11. Garber A. J., Salganicoff L. Regulation of oxalacetate metabolism in liver mitochondria. Evidence for nicotinamide adenine dinucleotide-malate dehydrogenase equilibrium and the role of phosphoenolpyruvate carboxykinase in the control of oxalacetate metabolism in intact guinea pig and rat liver mitochondria. J Biol Chem. 1973 Mar 10;248(5):1520–1529. [PubMed] [Google Scholar]
  12. Gregolin C., Ryder E., Lane M. D. Liver acetyl coenzyme A carboxylase. I. Isolation and cat- alytic properties. J Biol Chem. 1968 Aug 25;243(16):4227–4235. [PubMed] [Google Scholar]
  13. Groot P. H. The activation of short-chain fatty acids by the soluble fraction of guinea-pig heart and liver mitochondria. The search for a distinct propionyl-CoA synthetase. Biochim Biophys Acta. 1975 Jan 24;380(1):12–20. doi: 10.1016/0005-2760(75)90040-5. [DOI] [PubMed] [Google Scholar]
  14. Guynn R. W., Veloso D., Veech R. L. The concentration of malonyl-coenzyme A and the control of fatty acid synthesis in vivo. J Biol Chem. 1972 Nov 25;247(22):7325–7331. [PubMed] [Google Scholar]
  15. HAGEN P., ROBINSON K. W. The production and absorption of volatile fatty acids in the intestine of the guinea-pig. Aust J Exp Biol Med Sci. 1953 Feb;31(1):99–103. doi: 10.1038/icb.1953.12. [DOI] [PubMed] [Google Scholar]
  16. HELE P. The acetate activating enzyme of beef heart. J Biol Chem. 1954 Feb;206(2):671–676. [PubMed] [Google Scholar]
  17. Hanson R. W., Ballard F. J. The relative significance of acetate and glucose as precursors for lipid synthesis in liver and adipose tissue from ruminants. Biochem J. 1967 Nov;105(2):529–536. doi: 10.1042/bj1050529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hashimoto T., Isano H., Iritani N., Numa S. Liver acetyl-coenzyme-A carboxylase. Studies on kynurenate inhibition, isotope exchange and interaction of the uncarboxylated enzyme with citrate. Eur J Biochem. 1971 Dec 22;24(1):128–139. doi: 10.1111/j.1432-1033.1971.tb19663.x. [DOI] [PubMed] [Google Scholar]
  19. Hershfield M. S., Nemeth A. M. Placental transport of free palmitic and linoleic acids in the guinea pig. J Lipid Res. 1968 Jul;9(4):460–468. [PubMed] [Google Scholar]
  20. Jones C. T., Firmin W. Lipid synthesis in vivo by tissues of the maternal and foetal guinea pig. Biochem J. 1976 Jan 15;154(1):159–161. doi: 10.1042/bj1540159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jungas R. L. Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry. 1968 Oct;7(10):3708–3717. doi: 10.1021/bi00850a050. [DOI] [PubMed] [Google Scholar]
  22. Kayden H. J., Dancis J., Money W. L. Transfer of lipids across the guinea pig placenta. Am J Obstet Gynecol. 1969 Jun 15;104(4):564–572. doi: 10.1016/s0002-9378(16)34248-x. [DOI] [PubMed] [Google Scholar]
  23. Kleineke J., Sauer H., Söling H. D. On the specificity of the tricarboxylate carrier system in rat liver mitochondria. FEBS Lett. 1973 Jan 15;29(2):82–86. doi: 10.1016/0014-5793(73)80531-9. [DOI] [PubMed] [Google Scholar]
  24. Kornacker M. S., Ball E. G. Citrate cleavage in adipose tissue. Proc Natl Acad Sci U S A. 1965 Sep;54(3):899–904. doi: 10.1073/pnas.54.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lockwood E. A., Bailey E., Taylor C. B. Factors involved in changes in hepatic lipogenesis during development of the rat. Biochem J. 1970 Jun;118(1):155–162. doi: 10.1042/bj1180155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lowenstein J. M. Effect of (-)-hydroxycitrate on fatty acid synthesis by rat liver in vivo. J Biol Chem. 1971 Feb 10;246(3):629–632. [PubMed] [Google Scholar]
  27. NEWTON W. L., DEWITT W. B. Nutrition and serum protein levels in germfree guinea pigs. J Nutr. 1961 Oct;75:145–151. doi: 10.1093/jn/75.2.145. [DOI] [PubMed] [Google Scholar]
  28. PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
  29. POPJAK G. The origin of fetal lipids. Cold Spring Harb Symp Quant Biol. 1954;19:200–208. doi: 10.1101/sqb.1954.019.01.026. [DOI] [PubMed] [Google Scholar]
  30. Patel M. S., Hanson R. W. Lipogenesis in developing guinea pig liver. Mech Ageing Dev. 1974 Mar;3(1):65–73. doi: 10.1016/0047-6374(74)90006-2. [DOI] [PubMed] [Google Scholar]
  31. Portman O. W., Behrman R. E., Soltys P. Transfer of free fatty acids across the primate placenta. Am J Physiol. 1969 Jan;216(1):143–147. doi: 10.1152/ajplegacy.1969.216.1.143. [DOI] [PubMed] [Google Scholar]
  32. Robinson B. H., Williams G. R., Halperin M. L., Leznoff C. C. Factors affecting the kinetics and equilibrium of exchange reactions of the citrate-transporting system of rat liver mitochondria. J Biol Chem. 1971 Sep 10;246(17):5280–5286. [PubMed] [Google Scholar]
  33. Roux J. F. Lipid metabolism in the fetal and neonatal rabbit. Metabolism. 1966 Sep;15(9):856–864. doi: 10.1016/0026-0495(66)90178-8. [DOI] [PubMed] [Google Scholar]
  34. Roux J. F., Yoshioka T. Lipid metabolism in the fetus during development. Clin Obstet Gynecol. 1970 Sep;13(3):595–620. doi: 10.1097/00003081-197009000-00009. [DOI] [PubMed] [Google Scholar]
  35. SHEPHERD J. T., WHELAN R. F. The blood flow in the umbilical cord of the foetal guinea-pig. J Physiol. 1951 Oct 29;115(2):150–157. doi: 10.1113/jphysiol.1951.sp004659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. SRERE P. A. The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem. 1959 Oct;234:2544–2547. [PubMed] [Google Scholar]
  37. Salmon D. M., Bowen N. L., Hems D. A. Synthesis of fatty acids in the perused mouse liver. Biochem J. 1974 Sep;142(3):611–618. doi: 10.1042/bj1420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spencer A. F., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Citrate cleavage in obesity and lactation. Biochem J. 1966 Jun;99(3):760–765. doi: 10.1042/bj0990760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spencer A., Corman L., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. A comparison of citrate and acetate incorporation into fatty acids. Biochem J. 1964 Nov;93(2):378–388. doi: 10.1042/bj0930378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Szabo A. J., Grimaldi R. D., Jung W. F. Palmitate transport across perfused human placenta. Metabolism. 1969 May;18(5):406–415. doi: 10.1016/0026-0495(69)90069-9. [DOI] [PubMed] [Google Scholar]
  41. Taylor C. B., Bailey E., Bartley W. Changes in hepatic lipigenesis during development of the rat. Biochem J. 1967 Nov;105(2):717–722. doi: 10.1042/bj1050717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. VAGELOS P. R., ALBERTS A. W., MARTIN D. B. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533–540. [PubMed] [Google Scholar]
  43. VAN DUYNE C. M., HAVEL R. J., FELTS J. M. Placental transfer of palmitic acid-1-C14 in rabbits. Am J Obstet Gynecol. 1962 Oct 15;84:1069–1074. doi: 10.1016/0002-9378(62)90556-2. [DOI] [PubMed] [Google Scholar]
  44. VILLEE C. A., LORING J. M. Alternative pathways of carbohydrate metabolism in foetal and adult tissues. Biochem J. 1961 Dec;81:488–494. doi: 10.1042/bj0810488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Van Duyne C. M. Free fatty acid metabolism during perinatal life. Biol Neonat. 1965;9(1):115–123. [PubMed] [Google Scholar]
  46. Veneziale C. M., Walter P., Kneer N., Lardy H. A. Influence of L-tryptophan and its metabolites on gluconeogenesis in the isolated, perfused liver. Biochemistry. 1967 Jul;6(7):2129–2138. doi: 10.1021/bi00859a034. [DOI] [PubMed] [Google Scholar]
  47. Volpe J. J., Kishimoto Y. Fatty acid synthetase of brain: development, influence of nutritional and hormonal factors and comparison with liver enzyme. J Neurochem. 1972 Mar;19(3):737–753. doi: 10.1111/j.1471-4159.1972.tb01389.x. [DOI] [PubMed] [Google Scholar]
  48. WAKIL S. J., TITCHENER E. B., GIBSON D. M. Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta. 1958 Jul;29(1):225–226. doi: 10.1016/0006-3002(58)90177-x. [DOI] [PubMed] [Google Scholar]
  49. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wadke M., Brunengraber H., Lowenstein J. M., Dolhun J. J., Arsenault G. P. Fatty acid synthesis by liver perfused with deuterated and tritiated water. Biochemistry. 1973 Jul 3;12(14):2619–2624. doi: 10.1021/bi00738a011. [DOI] [PubMed] [Google Scholar]
  51. Walter P., Paetkau V., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. 3. The role and regulation of mitochondrial processes involved in supplying precursors of phosphoenolpyruvate. J Biol Chem. 1966 Jun 10;241(11):2523–2532. [PubMed] [Google Scholar]
  52. Watson J. A., Fang M., Lowenstein J. M. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch Biochem Biophys. 1969 Dec;135(1):209–217. doi: 10.1016/0003-9861(69)90532-3. [DOI] [PubMed] [Google Scholar]
  53. Watson J. A., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J Biol Chem. 1970 Nov 25;245(22):5993–6002. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES