Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Feb 15;154(2):307–310. doi: 10.1042/bj1540307

Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.

V Mishin, A Pokrovsky, V V Lyakhovich
PMCID: PMC1172711  PMID: 7236

Abstract

In rat liver microsomal fractions oxidation of adrenaline was effected by superoxide anion radicals (O2-), whereas cytochrome c, 2,6-dichlorophenol-indophenol and ferricyanide accepted electrons from NADPH-specific flavoprotein only directly. Nitro Blue Tetrazolium was reduced both by O2- and by the direct acceptance of electrons. Elevation of pH and addition of menadione shift the Nitro Blue Tetrazolium reduction towards the O2--dependent pathway. From the values of the kinetic constants for interaction of adrenaline and Nitro Blue Tetrazolium with NADPH-specific flavoprotein, the rates of generation of O2- in rat liver microsomal fraction were determined.

Full text

PDF
307

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aust S. D., Roerig D. L., Pederson T. C. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1133–1137. doi: 10.1016/0006-291x(72)90952-7. [DOI] [PubMed] [Google Scholar]
  2. Fong K. L., McCay P. B., Poyer J. L., Keele B. B., Misra H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973 Nov 25;248(22):7792–7797. [PubMed] [Google Scholar]
  3. GREEN S., MAZUR A., SHORR E. Mechanism of the catalytic oxidation of adrenaline by ferritin. J Biol Chem. 1956 May;220(1):237–255. [PubMed] [Google Scholar]
  4. Gnosspelius Y., Thor H., Orrenius S. A comparative study on the effects of phenobarbital and 3,4-benzpyrene on the hydroxylating enzyme system of rat-liver microsomes. Chem Biol Interact. 1969 Dec;1(2):125–137. doi: 10.1016/0009-2797(69)90001-5. [DOI] [PubMed] [Google Scholar]
  5. Iyanagi T., Makino N., Mason H. S. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases. Biochemistry. 1974 Apr 9;13(8):1701–1710. doi: 10.1021/bi00705a023. [DOI] [PubMed] [Google Scholar]
  6. Iyanagi T., Yamazaki I. One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes. Biochim Biophys Acta. 1969 Apr 8;172(3):370–381. doi: 10.1016/0005-2728(69)90133-9. [DOI] [PubMed] [Google Scholar]
  7. Kumar R. P., Ravindranath S. D., Vaidyanathan C. S., Rao N. A. Mechanism of hydroxylation of aromatic compounds. II. Evidence for the involvement of superoxide anions in enzymatic hydroxylations. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1422–1426. doi: 10.1016/0006-291x(72)90497-4. [DOI] [PubMed] [Google Scholar]
  8. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  9. Misra H. P., Fridovich I. The generation of superoixide radical during the autoxidation of ferredoxins. J Biol Chem. 1971 Nov 25;246(22):6886–6890. [PubMed] [Google Scholar]
  10. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  11. Pederson T. C., Aust S. D. NADPH-dependen lipid peroxidation catalyzed by purified NADPH-cytochrome C reductase from rat liver microsomes. Biochem Biophys Res Commun. 1972 Aug 21;48(4):789–795. doi: 10.1016/0006-291x(72)90676-6. [DOI] [PubMed] [Google Scholar]
  12. Roerig D. L., Mascaro L., Jr, Aust S. D. Microsomal electron transport: tetrazolium reduction by rat liver microsomal NADPH-cytochrome c reductase. Arch Biochem Biophys. 1972 Dec;153(2):475–479. doi: 10.1016/0003-9861(72)90365-7. [DOI] [PubMed] [Google Scholar]
  13. STEYN-PARVE E. P., BEINERT H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. VI. Isolation and properties of stable enzyme-substrate complexes. J Biol Chem. 1958 Oct;233(4):843–852. [PubMed] [Google Scholar]
  14. Staudt H., Lichtenberger F., Ullrich V. The role of NADH in uncoupled microsomal monoxygenations. Eur J Biochem. 1974 Jul 1;46(1):99–106. doi: 10.1111/j.1432-1033.1974.tb03601.x. [DOI] [PubMed] [Google Scholar]
  15. Tsyrlov I., Mishin V., Lyakhovich V. Resistance of microsomes from CCl 4 -ccirrhotic rat liver to lipoperoxidation activity. Life Sci II. 1972 Nov 8;11(21):1045–1054. doi: 10.1016/0024-3205(72)90206-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES