Abstract
Cytoplasmic macromolecules were previously identified which regulate both qualitatively and quantitatively the release of messenger-like RNA from isolated nuclei. These macromolecules are now shown to be denatured at 45-50 degrees C and their synthesis is sensitive to pactamycin or cycloheximide. The putative regulatory proteins are essentially quantitatively precipitated with high specificity from the cytosol by streptomycin at a concentration 10-fold higher than that used to precipitate RNA. The nuclear concentration-dependence of RNA transport from successive samples of nuclei strongly suggests that the regulatory factors are recycled. Quantitative changes in the sequences transported at various dilutions of the cytosol suggest that not all the different classes of the putative regulatory macromolecules are present in an effective concentration at any one dilution.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attardi G., Parnas H., Hwang M. I., Attardi B. Giant-size rapidly labeled nuclear ribonucleic acid and cytoplasmic messenger ribonucleic acid in immature duck erythrocytes. J Mol Biol. 1966 Sep;20(1):145–182. doi: 10.1016/0022-2836(66)90123-9. [DOI] [PubMed] [Google Scholar]
- Both G. W., Banerjee A. K., Shatkin A. J. Methylation-dependent translation of viral messenger RNAs in vitro. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1189–1193. doi: 10.1073/pnas.72.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darnell J. E., Philipson L., Wall R., Adesnik M. Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science. 1971 Oct 29;174(4008):507–510. doi: 10.1126/science.174.4008.507. [DOI] [PubMed] [Google Scholar]
- Duncan R., Dower W., Humphreys T. Normal synthesis, transport and decay of mRNA in the absence of its translation. Nature. 1975 Feb 27;253(5494):751–753. doi: 10.1038/253751a0. [DOI] [PubMed] [Google Scholar]
- Fabergé A. C. The nuclear pore complex: its free existence and an hypothesis as to its origin. Cell Tissue Res. 1974;151(4):403–415. doi: 10.1007/BF00222987. [DOI] [PubMed] [Google Scholar]
- Grollman A. P., Huang M. T. Inhibitors of protein synthesis in eukaryotes: tools in cell research. Fed Proc. 1973 Jun;32(6):1673–1678. [PubMed] [Google Scholar]
- Johnson L. F., Williams J. G., Abelson H. T., Green H., Penman S. Changes in RNA in relation to growth of the fibroblast. III. Posttranscriptional regulation of mRNA formation in resting and growing cells. Cell. 1975 Jan;4(1):69–75. doi: 10.1016/0092-8674(75)90135-x. [DOI] [PubMed] [Google Scholar]
- Kalimi M., Beato M., Feigelson P. Interaction of glucocorticoids with rat liver nuclei. I. Role of the cytosol proteins. Biochemistry. 1973 Aug 28;12(18):3365–3371. doi: 10.1021/bi00742a001. [DOI] [PubMed] [Google Scholar]
- Krystal G., Webb T. E. Multiple forms of uridine kinase in normal and neoplastic rat liver. Biochem J. 1971 Oct;124(5):943–947. doi: 10.1042/bj1240943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwan S. W., Brawerman G. A particle associated with the polyadenylate segment in mammalian messenger RNA. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3247–3250. doi: 10.1073/pnas.69.11.3247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racevskis J., Webb T. E. Processing and release of ribosomal RNA from isolated nuclei: analysis of the ATP-dependence and cytosol-dependence. Eur J Biochem. 1974 Nov 1;49(1):93–100. doi: 10.1111/j.1432-1033.1974.tb03814.x. [DOI] [PubMed] [Google Scholar]
- Samarina O. P., Lukanidin E. M., Molnar J., Georgiev G. P. Structural organization of nuclear complexes containing DNA-like RNA. J Mol Biol. 1968 Apr 14;33(1):251–263. doi: 10.1016/0022-2836(68)90292-1. [DOI] [PubMed] [Google Scholar]
- Schumm D. E., McNamara D. J., Webb T. E. Cytoplasmic proteins regulating messenger RNA release from nuclei. Nat New Biol. 1973 Oct 17;245(146):201–203. doi: 10.1038/newbio245201a0. [DOI] [PubMed] [Google Scholar]
- Schumm D. E., Morris H. P., Webb T. E. Cytosol-modulated transport of messenger RNA from isolated nuclei. Cancer Res. 1973 Aug;33(8):1821–1828. [PubMed] [Google Scholar]
- Schumm D. E., Webb T. E. Modified messenger ribonucleic acid release from isolated hepatic nuclei after inhibition of polyadenylate formation. Biochem J. 1974 Apr;139(1):191–196. doi: 10.1042/bj1390191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumm D. E., Webb T. E. The in vivo equivalence of a cell-free system for RNA processing and transport. Biochem Biophys Res Commun. 1974 May 20;58(2):354–360. doi: 10.1016/0006-291x(74)90372-6. [DOI] [PubMed] [Google Scholar]
- Schumm D. E., Webb T. E. Transport of informosomes from isolated nuclei of regenerating rat liver. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1259–1265. doi: 10.1016/0006-291x(72)90847-9. [DOI] [PubMed] [Google Scholar]
- Shearer R. W. Specificity of chemical modification of ribonucleic acid transport by liver carcinogens in the rat. Biochemistry. 1974 Apr 9;13(8):1764–1767. doi: 10.1021/bi00705a032. [DOI] [PubMed] [Google Scholar]
- Spohr G., Imaizumi T., Scherrer K. Synthesis and processing of nuclear precursor-messenger RNA in avian erythroblasts and HeLa cells. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5009–5013. doi: 10.1073/pnas.71.12.5009. [DOI] [PMC free article] [PubMed] [Google Scholar]
