Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Mar 15;154(3):589–595. doi: 10.1042/bj1540589

Role of membranes in bile formation. Comparison of the composition of bile and a liver bile-canalicular plasma-membrane subfraction.

W H Evans, T Kremmmer, J G Culvenor
PMCID: PMC1172759  PMID: 182122

Abstract

1. Enzymes, proteins, glycoproteins and lipids of rodent bile were compared with those of a plasma-membrane subfraction originating from the hepatocyte bile-canalicular membrane. 2. Three bile-canalicular glycoprotein enzyme activities were detected in bile. Comparison of the pH optimum and immunoinhibition properties of membrane and bile 5'-nucleotidase activity indicated that they were the same enzyme. Correspondence between membrane and bile alkaline phosphodiesterases also suggested that they were the same enzymes. Activities of Mg2+-stimulated adenosine triphosphatase, a lipid-dependent intrinsic membrane protein, and galactosyltransferase, a Golgi membrane marker, were not detected in bile. 3. Rodent bile contained 15 polypeptide bands that differed radically from those of bile-canalicular membranes. Bands that may correspond in molecular weight to liver plasma-membrane glycoproteins were present at low staining intensities in bile. A major protein of apparent molecular weight 49 500 was present, and albumin was detected by immunodiffusion. 4. The lipid composition of bile and bile-canalicular membrane also differed. Phosphatidylcholine accounted for 82% of rat bile phospholipids, and only trace amounts of phosphatidylinositol, phosphatidylserine and sphingomyelin were present. 5. The results indicate that in healthy animals, the bile-canalicular membrane is refractory to the action of bile acids during the secretory process. The presence of only small amounts of bile-canalicular membrane components, especially glycoprotein enzymes located at the outer face of the membrane, suggests that these are released from the membrane by bile acids after secretion of bile into the canalicular spaces.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIAVA C. G. STUDIES ON CHOLESTASIS. A RE-EVALUATION OF THE FINE STRUCTURE OF NORMAL HUMAN BILE CANALICULI. Lab Invest. 1964 Aug;13:840–864. [PubMed] [Google Scholar]
  2. Bergeron J. J., Ehrenreich J. H., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization. J Cell Biol. 1973 Oct;59(1):73–88. doi: 10.1083/jcb.59.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergeron J. J., Evans W. H., Geschwind I. I. Insulin binding to rat liver Golgi fractions. J Cell Biol. 1973 Dec;59(3):771–776. doi: 10.1083/jcb.59.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blond J. P., Lemarchal P., Le Breton E. Détermination densitométrique des phospholipides apres chromatographie en couche mince et révélation sulfomolybdique. Biochimie. 1971;53(11):1221–1224. [PubMed] [Google Scholar]
  5. Bouchier I. A., Freston J. W. The aetiology of gallstones. Lancet. 1968 Feb 17;1(7538):340–344. doi: 10.1016/s0140-6736(68)90801-5. [DOI] [PubMed] [Google Scholar]
  6. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
  7. Desmet V. J. Morphologic and histochemical aspects of cholestasis. Prog Liver Dis. 1972;4:97–132. [PubMed] [Google Scholar]
  8. ESSNER E., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase and 5-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J Biophys Biochem Cytol. 1958 Nov 25;4(6):711–716. doi: 10.1083/jcb.4.6.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Emmelot P., Van Hoeven R. P. Phospholipid unsaturation and plasma membrane organization. Chem Phys Lipids. 1975 May;14(3):236–246. doi: 10.1016/0009-3084(75)90005-5. [DOI] [PubMed] [Google Scholar]
  10. Evans W. H., Bergeron J. J., Geschwind I. I. Distribution of insulin receptor sites among liver plasma membrane subfractions. FEBS Lett. 1973 Aug 15;34(2):259–262. doi: 10.1016/0014-5793(73)80807-5. [DOI] [PubMed] [Google Scholar]
  11. Evans W. H. Fractionation of liver plasma membranes prepared by zonal centrifugation. Biochem J. 1970 Mar;116(5):833–842. doi: 10.1042/bj1160833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans W. H., Gurd J. W. Properties of a 5'-nucleotidase purified from mouse liver plasma membranes. Biochem J. 1973 May;133(1):189–199. doi: 10.1042/bj1330189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans W. H., Hood D. O., Gurd J. W. Purification and properties of a mouse liver plasma-membrane glycoprotein hydrolysing nucleotide pyrophosphate and phosphodiester bonds. Biochem J. 1973 Dec;135(4):819–826. doi: 10.1042/bj1350819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans W. H. Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature. 1974 Aug 2;250(465):391–394. doi: 10.1038/250391a0. [DOI] [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. Farquhar M. G., Bergeron J. J., Palade G. E. Cytochemistry of Golgi fractions prepared from rat liver. J Cell Biol. 1974 Jan;60(1):8–25. doi: 10.1083/jcb.60.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Forker E. L., Hicklin T., Sornson H. The clearance of mannitol and erythritol in rat bile. Proc Soc Exp Biol Med. 1967 Oct;126(1):115–119. doi: 10.3181/00379727-126-32380. [DOI] [PubMed] [Google Scholar]
  18. Fritzson P., Smith I. A new nucleotidase of rat liver with activity toward 3'-and 5'-nucleotides. Biochim Biophys Acta. 1971 Apr 14;235(1):128–141. doi: 10.1016/0005-2744(71)90040-4. [DOI] [PubMed] [Google Scholar]
  19. Glossmann H., Neville D. M., Jr Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat. J Biol Chem. 1971 Oct 25;246(20):6339–6346. [PubMed] [Google Scholar]
  20. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gurd J. W., Evans W. H. Distribution of liver plasma membrane 5' nucleotidase as indicated by its reaction with anti-plasma membrane serum. Arch Biochem Biophys. 1974 Sep;164(1):305–311. doi: 10.1016/0003-9861(74)90035-6. [DOI] [PubMed] [Google Scholar]
  22. Gurd J. W., Evans W. H., Perkins H. R. The distribution of surface antigens during fractionation of mouse liver plasma membranes. Biochem J. 1972 Nov;130(1):271–280. doi: 10.1042/bj1300271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  24. Hofmann A. F., Small D. M. Detergent properties of bile salts: correlation with physiological function. Annu Rev Med. 1967;18:333–376. doi: 10.1146/annurev.me.18.020167.002001. [DOI] [PubMed] [Google Scholar]
  25. Holdsworth G., Coleman R. Enzyme profiles of mammalian bile. Biochim Biophys Acta. 1975 Apr 21;389(1):47–50. doi: 10.1016/0005-2736(75)90384-3. [DOI] [PubMed] [Google Scholar]
  26. Ito R., Mitsui A., Tsushima K. Properties of 5'-nucleotidase from hepatic tissue of higher animals. J Biochem. 1968 Feb;63(2):165–169. doi: 10.1093/oxfordjournals.jbchem.a128757. [DOI] [PubMed] [Google Scholar]
  27. Kim Y. S., Perdomo J., Whitehead J. S., Curtis K. J. Glycosyltransferases in human blood. II. Study of serum galactosyltransferase and N-acetylgalactosaminyltransferase in patients with liver diseases. J Clin Invest. 1972 Aug;51(8):2033–2039. doi: 10.1172/JCI107009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Lou H. O., Clausen J., Bierring F. Phospholipids and glycolipids of tumours in the central nervous system. J Neurochem. 1965 Jul;12(7):619–627. doi: 10.1111/j.1471-4159.1965.tb04255.x. [DOI] [PubMed] [Google Scholar]
  30. Mendelsohn D., Mendelsohn L., Staple E. The in vitro catabolism of cholesterol. Formation of cholic acid from cholesterol in rat liver. Biochemistry. 1966 Oct;5(10):3194–3198. doi: 10.1021/bi00874a018. [DOI] [PubMed] [Google Scholar]
  31. Mookerjea S., Yung J. W. Studies on uridine diphosphate-galactose pyrophosphatase and uridine diphosphate-galactose: glycoprotein galactosyltransferase activities in microsomal membranes. Arch Biochem Biophys. 1975 Jan;166(1):223–226. doi: 10.1016/0003-9861(75)90383-5. [DOI] [PubMed] [Google Scholar]
  32. Neskovic N. M. The quantitative determination of phospholipids by direct photodensitometry of thin-layer chromatograms. J Chromatogr. 1967 Apr;27(2):488–490. doi: 10.1016/s0021-9673(01)85907-0. [DOI] [PubMed] [Google Scholar]
  33. Noguchi T., Freed S. Dissociation of lipid components and reconsititution at --75 degrees C of Mg2+ dependent, Na+ and K+ stimulated, adenosine triphosphatase in rat brain. Nat New Biol. 1971 Mar 31;230(13):148–150. doi: 10.1038/newbio230148a0. [DOI] [PubMed] [Google Scholar]
  34. OUCHTERLONY O. Antigen-antibody reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta Pathol Microbiol Scand. 1953;32(2):230–240. [PubMed] [Google Scholar]
  35. Oda M., Price V. M., Fisher M. M., Phillips M. J. Ultrastructure of bile canaliculi, with special reference to the surface coat and the pericanalicular web. Lab Invest. 1974 Oct;31(4):314–323. [PubMed] [Google Scholar]
  36. Philippot J. Study of human red blood cell membrane using sodium deoxycholate. I. Mechanism of the solubilization. Biochim Biophys Acta. 1971 Feb 2;225(2):201–213. doi: 10.1016/0005-2736(71)90213-6. [DOI] [PubMed] [Google Scholar]
  37. Pope C. E., 2nd, Cooperband S. R. Protein characteristics of serum and bile alkaline phosphatase. Gastroenterology. 1966 May;50(5):631–636. [PubMed] [Google Scholar]
  38. RAWSON A. J. Human bile proteins. I. Proteins identified by antibody to human serum. Clin Chem. 1962 May-Jun;8:310–317. [PubMed] [Google Scholar]
  39. Ray T. K., Skipski V. P., Barclay M., Essner E., Archibald F. M. Lipid composition of rat liver plasma membranes. J Biol Chem. 1969 Oct 25;244(20):5528–5536. [PubMed] [Google Scholar]
  40. SPITZER H. L., KYRIAKIDES E. C., BALINT J. A. BILIARY PHOSPHOLIPIDS IN VARIOUS SPECIES. Nature. 1964 Oct 17;204:288–288. doi: 10.1038/204288a0. [DOI] [PubMed] [Google Scholar]
  41. Schmid R. Bilirubin metabolism in man. N Engl J Med. 1972 Oct 5;287(14):703–709. doi: 10.1056/NEJM197210052871407. [DOI] [PubMed] [Google Scholar]
  42. Simon F. R., Arias I. M. Alteration of bile canalicular enzymes in cholestasis. A possible cause of bile secretory failure. J Clin Invest. 1973 Apr;52(4):765–775. doi: 10.1172/JCI107239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Small D. M. The formation of gallstones. Adv Intern Med. 1970;16:243–264. [PubMed] [Google Scholar]
  44. Trams E. G., Lauter C. J. On the sidedness of plasma membrane enzymes. Biochim Biophys Acta. 1974 Apr 29;345(2):180–197. doi: 10.1016/0005-2736(74)90257-0. [DOI] [PubMed] [Google Scholar]
  45. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  46. Wheeler K. P., Whittam R. ATPase activity of the sodium pump needs phosphatidylserine. Nature. 1970 Jan 31;225(5231):449–450. doi: 10.1038/225449a0. [DOI] [PubMed] [Google Scholar]
  47. Wisher M. H., Evans W. H. Functional polarity of the rat hepatocyte surface membrane. Isolation and characterization of plasma-membrane subfractions from the blood-sinusoidal, bile-Canalicular and contiguous surfaces of the hepatocyte. Biochem J. 1975 Feb;146(2):375–388. doi: 10.1042/bj1460375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES