Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Jul;128(4):755–762. doi: 10.1042/bj1280755

Purification and properties of the ribonucleic acid-dependent ribonucleic acid polymerase from Halobacterium cutirubrum

B Gregory Louis 1, P S Fitt 1
PMCID: PMC1173895  PMID: 4638791

Abstract

1. The RNA-dependent RNA polymerase from Halobacterium cutirubrum was purified to electrophoretic homogeneity. 2. It requires a single-stranded molecule of RNA or polyribonucleotide as template. 3. Nearest-neighbour analyses of the products formed on random poly(A,U) or alternating poly(A-U) templates and base analysis of the product of synthesis directed by wheat-germ RNA prove that the template is copied accurately. 4. The enzyme initiates new chains with purine ribonucleoside triphosphates. 5. Sucrose-density-gradient analysis of the product indicates that it has a size distribution similar to that of the template. 6. Preliminary amino acid analysis of the RNA-dependent polymerase shows that it contains much less serine than either of the subunits of H. cutirubrum DNA-dependent RNA polymerase. 7. The RNA-dependent enzyme is unable to substitute for either subunit of the DNA-dependent polymerase, and both the latter are devoid of RNA-dependent activity.

Full text

PDF
755

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astier-Manifacier S., Cornuet P. RNA-dependent RNA polymerase in Chinese cabbage. Biochim Biophys Acta. 1971 Mar 25;232(3):484–493. doi: 10.1016/0005-2787(71)90602-2. [DOI] [PubMed] [Google Scholar]
  2. August J. T. Mechanism of synthesis of bacteriophage RNA. Nature. 1969 Apr 12;222(5189):121–123. doi: 10.1038/222121a0. [DOI] [PubMed] [Google Scholar]
  3. Krakow J. S., Horsley W. J. Azotobacter vinelandii ribonucleic acid polymerase. 3. Ribonucleic acid chain initiation. J Biol Chem. 1967 Oct 25;242(20):4796–4800. [PubMed] [Google Scholar]
  4. Litvak S., Carr D. S., Chapeville F. TYMV RNA As a substrate of the tRNA nucleotidyltransferase. FEBS Lett. 1970 Dec 18;11(5):316–319. doi: 10.1016/0014-5793(70)80557-9. [DOI] [PubMed] [Google Scholar]
  5. Louis B. G., Fitt P. S. Halobacterium cutirubrum RNA polymerase: Subunit composition and salt-dependent template specificity. FEBS Lett. 1971 Apr 30;14(3):143–145. doi: 10.1016/0014-5793(71)80089-3. [DOI] [PubMed] [Google Scholar]
  6. Louis B. G., Fitt P. S. Isolation and properties of highly purified Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1972 Mar;127(1):69–80. doi: 10.1042/bj1270069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):621–627. doi: 10.1042/bj1210621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum ribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):629–633. doi: 10.1042/bj1210629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Louis B. G., Fitt P. S. The role of Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase subunits in initiation and polymerization. Biochem J. 1972 Mar;127(1):81–86. doi: 10.1042/bj1270081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Louis B. G., Peterkin P. I., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Gel-filtration and density-gradient-centrifugation studies of the molecular weights of Halobacterium cutirubrum polynucleotide phosphorylase and deoxyribonucleic acid- and ribonucleic acid-dependent ribonucleic acid polymerases. Biochem J. 1971 Feb;121(4):635–641. doi: 10.1042/bj1210635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maitra U., Hurwitz H. The role of DNA in RNA synthesis, IX. Nucleoside triphosphate termini in RNA polymerase products. Proc Natl Acad Sci U S A. 1965 Sep;54(3):815–822. doi: 10.1073/pnas.54.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neuhoff V., Schill W. B., Jacherts D. Nachweis einer RNA-abhängigen RNA-Replicase aus immunologisch kompetenten Zellen durch Mikro-Disk-Elektrophorese. Hoppe Seylers Z Physiol Chem. 1970 Feb;351(2):157–162. [PubMed] [Google Scholar]
  13. Peterkin P. I., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum polynucleotide phosphorylase. Biochem J. 1971 Feb;121(4):613–620. doi: 10.1042/bj1210613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Spiegelman S., Pace N. R., Mills D. R., Levisohn R., Eikhom T. S., Taylor M. M., Peterson R. L., Bishop D. H. The mechanism of RNA replication. Cold Spring Harb Symp Quant Biol. 1968;33:101–124. doi: 10.1101/sqb.1968.033.01.015. [DOI] [PubMed] [Google Scholar]
  15. Travers A. A., Burgessrr Cyclic re-use of the RNA polymerase sigma factor. Nature. 1969 May 10;222(5193):537–540. doi: 10.1038/222537a0. [DOI] [PubMed] [Google Scholar]
  16. Yoshida H., Shibata M. A rapid method for the determination of the major-base composition of ribonucleic acid. J Biochem. 1969 Nov;66(5):737–738. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES