Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Jul;128(4):817–831. doi: 10.1042/bj1280817

Purification and properties of Penicillium glucose 6-phosphate dehydrogenase

A Anne Malcolm 1, M G Shepherd 1
PMCID: PMC1173902  PMID: 4404766

Abstract

1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000±10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP+- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP+, protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The Km values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3×10−5m-NADP+ and 1.6×10−4m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2×10−5m-NADP+ and 2.5×10−4m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP+ and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme–NADP+–6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ·mol−1 (9.6 and 9.9kcal·mol−1) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5×10−6m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.

Full text

PDF
817

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERS G. K. MOLECULAR EXCLUSION AND RESTRICTED DIFFUSION PROCESSES IN MOLECULAR-SIEVE CHROMATOGRAPHY. Biochemistry. 1964 May;3:723–730. doi: 10.1021/bi00893a021. [DOI] [PubMed] [Google Scholar]
  2. ATLAS S. M., FARBER E. On the molecular weight of cytochrome c from mammalian heart muscle. J Biol Chem. 1956 Mar;219(1):31–37. [PubMed] [Google Scholar]
  3. Amelunxen R. E. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 10;122(2):175–181. doi: 10.1016/0926-6593(66)90059-2. [DOI] [PubMed] [Google Scholar]
  4. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BURTON K. The stabilization of D-amino acid oxidase by flavin-adenine dinucleotide, substrates and competitive inhibitors. Biochem J. 1951 Apr;48(4):458–467. doi: 10.1042/bj0480458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonsignore A., Lorenzoni I., Cancedda R., De Flora A. Distinctive patterns of NADP binding to dimeric and tetrameric glucose 6-phosphate dehydrogenase from human red cells. Biochem Biophys Res Commun. 1970 Apr 8;39(1):142–148. doi: 10.1016/0006-291x(70)90769-2. [DOI] [PubMed] [Google Scholar]
  8. Broad T. E., Shepherd M. G. Purification and properties of glucose-6-phosphate dehydrogenase from the thermophilic fungus Penicillium dupontii. Biochim Biophys Acta. 1970 Mar 18;198(3):407–414. doi: 10.1016/0005-2744(70)90119-1. [DOI] [PubMed] [Google Scholar]
  9. Brock T. D. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967 Nov;158(3804):1012–1019. doi: 10.1126/science.158.3804.1012. [DOI] [PubMed] [Google Scholar]
  10. CECIL R., OGSTON A. G. Determination of sedimentation and diffusion constants of horse-radish peroxidase. Biochem J. 1951 Jun;49(1):105–106. [PubMed] [Google Scholar]
  11. CHUNG A. E., LANGDON R. G. Human erythrocyte glucose 6-phosphate dehydrogenase. I. Isolation and properties of the enzyme. J Biol Chem. 1963 Jul;238:2309–2316. [PubMed] [Google Scholar]
  12. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  13. Cohen P., Rosemeyer M. A. Human glucose-6-phosphate dehydrogenase: purification of the erythrocyte enzyme and the influence of ions on its activity. Eur J Biochem. 1969 Mar;8(1):1–7. doi: 10.1111/j.1432-1033.1969.tb00487.x. [DOI] [PubMed] [Google Scholar]
  14. Cohen P., Rosemeyer M. A. Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes. Eur J Biochem. 1969 Mar;8(1):8–15. doi: 10.1111/j.1432-1033.1969.tb00488.x. [DOI] [PubMed] [Google Scholar]
  15. Criss W. E., McKerns K. W. Activation of cow adrenal glucose 6-phosphate dehydrogenase by adrenocorticotropin. Biochemistry. 1968 Jun;7(6):2364–2368. doi: 10.1021/bi00846a044. [DOI] [PubMed] [Google Scholar]
  16. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Domagk G. F., Domschke W., Engel H. J. Untersuchungen über Proteinstruktur und Enzymaktivität. V. Hinweise auf eine unterschiedliche Proteinstruktur der beiden aus Candida utilis kristallisierten Glucose-6-phosphat-Dehydrogenasen. Hoppe Seylers Z Physiol Chem. 1969 Oct;350(10):1242–1246. [PubMed] [Google Scholar]
  18. Flavell R. B., Woodward D. O. The regulation of synthesis of Krebs cycle enzymes in Neurospora by catabolite and end product repression. Eur J Biochem. 1970 Apr;13(3):548–553. doi: 10.1111/j.1432-1033.1970.tb00959.x. [DOI] [PubMed] [Google Scholar]
  19. Gaucher G. M., Shepherd M. G. Isolation of orsellinic acid synthase. Biochem Biophys Res Commun. 1968 Aug 21;32(4):664–671. doi: 10.1016/0006-291x(68)90290-8. [DOI] [PubMed] [Google Scholar]
  20. Gaughran E. R. THE THERMOPHILIC MICROORGANISMS. Bacteriol Rev. 1947 Sep;11(3):189–225. doi: 10.1128/br.11.3.189-225.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HORECKER B. L., SMYRNIOTIS P. Z. Reversibility of glucose-6-phosphate oxidation. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):98–102. doi: 10.1016/0006-3002(53)90128-0. [DOI] [PubMed] [Google Scholar]
  22. Jaenicke R., Schmid D., Knof S. Monodispersity and quaternary structure of glyceraldehyde 3-phosphate dehydrogenase. Biochemistry. 1968 Mar;7(3):919–926. doi: 10.1021/bi00843a006. [DOI] [PubMed] [Google Scholar]
  23. KIRKMAN H. N., HENDRICKSON E. M. Glucose 6-phosphate dehydrogenase from human erythrocytes. II. Subactive states of the enzyme from normal persons. J Biol Chem. 1962 Jul;237:2371–2376. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. MARGOLIASH E., LUSTGARTEN J. Interconversion of horse heart cytochrome C monomer and polymers. J Biol Chem. 1962 Nov;237:3397–3405. [PubMed] [Google Scholar]
  26. MARKS P. A., SZEINBERG A., BANKS J. Erythrocyte glucose 6-phosphate dehydrogenase of normal and mutant human subjects: properties of the purified enzymes. J Biol Chem. 1961 Jan;236:10–17. [PubMed] [Google Scholar]
  27. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  28. MASSEY V. The crystallization of fumarase. Biochem J. 1952 Jul;51(4):490–494. doi: 10.1042/bj0510490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Majerus P. W., Vagelos P. R. Fatty acid biosynthesis and the role of the acyl carrier protein. Adv Lipid Res. 1967;5:1–33. [PubMed] [Google Scholar]
  30. Mumma R. O., Fergus C. L., Sekura R. D. The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids. 1970 Jan;5(1):100–103. doi: 10.1007/BF02531102. [DOI] [PubMed] [Google Scholar]
  31. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  32. PESCE A., MCKAY R. H., STOLZENBACH F., CAHN R. D., KAPLAN N. O. THE COMPARATIVE ENZYMOLOGY OF LACTIC DEHYDROGENASES. I. PROPERTIES OF THE CRYSTALLINE BEEF AND CHICKEN ENZYMES. J Biol Chem. 1964 Jun;239:1753–1761. [PubMed] [Google Scholar]
  33. RICHARDS O. C., RUTTER W. J. Preparation and properties of yeast aldolase. J Biol Chem. 1961 Dec;236:3177–3184. [PubMed] [Google Scholar]
  34. SCOTT D. B., COHEN S. S. The oxidative pathway of carbohydrate metabolism in Escherichia coli. 1. The isolation and properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochem J. 1953 Aug;55(1):23–33. doi: 10.1042/bj0550023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saunders G. F., Campbell L. L. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J Bacteriol. 1966 Jan;91(1):332–339. doi: 10.1128/jb.91.1.332-339.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  37. Soldin S. J., Balinsky D. The kinetic properties of human erythrocyte glucose 6-phosphate dehydrogenase. Biochemistry. 1968 Mar;7(3):1077–1081. doi: 10.1021/bi00843a027. [DOI] [PubMed] [Google Scholar]
  38. Sumner J. B., Gralén N. THE MOLECULAR WEIGHT OF CRYSTALLINE CATALASE. Science. 1938 Mar 25;87(2256):284–284. doi: 10.1126/science.87.2256.284. [DOI] [PubMed] [Google Scholar]
  39. TAYLOR J. F., LOWRY C. The molecular weights of some crystalline enzymes from muscle and yeast. I. Aldolase and D-glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1956 Apr;20(1):109–114. doi: 10.1016/0006-3002(56)90269-4. [DOI] [PubMed] [Google Scholar]
  40. TSUTSUI E. A., MARKS P. A. A study of the mechanism by which triphosphopyridine nucleotide affects human erythrocyte glucose-6-phosphate dehydrogenase. Biochem Biophys Res Commun. 1962 Aug 7;8:338–341. doi: 10.1016/0006-291x(62)90003-7. [DOI] [PubMed] [Google Scholar]
  41. Yoshida A. Glucose 6-phosphate dehydrogenase of human erythrocytes. I. Purification and characterization of normal (B+) enzyme. J Biol Chem. 1966 Nov 10;241(21):4966–4976. [PubMed] [Google Scholar]
  42. Yue R. H., Noltmann E. A., Kuby S. A. Glucose 6-phosphate dehydrogenase from brewers' yeast (Zwischenferment). 3. Studies on the subunit structure and on the molecular association phenomenon induced by triphosphopyridine nucleotide. J Biol Chem. 1969 Mar 10;244(5):1353–1364. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES