Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Jul;128(4):901–911. doi: 10.1042/bj1280901

Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro

L A Griffiths 1, G E Smith 1
PMCID: PMC1173909  PMID: 4638796

Abstract

1. The metabolism of a group of flavonoid compounds related in structure to apigenin (4′,5,7-trihydroxyflavone) and including apigenin, apiin, naringin, phlorrhizin, acacetin, kaempferol, robinin, chrysin, tectochrysin and 4′,7-dihydroxyflavone, was studied both in vivo after oral administration to the rat, and in vitro in cultures of micro-organisms derived from the intestine of the rat. 2. The rat intestinal microflora is capable of effecting degradation of flavonoid compounds to metabolites observed in the urine after oral administration of the specific flavonoid. 3. All compounds possessing free 5- and 7-hydroxyl groups in the A ring and a free 4′-hydroxyl group in the B ring gave rise to ring-fission products, which included 4′-hydroxyphenylacyl derivatives. 4. On anaerobic incubation in a thioglycollate medium, intestinal micro-organisms can effect flavonoid-ring fission, cleavage of glycosidic bonds and the reduction of double bonds in the side chains of certain metabolites. 5. Two flavonoids (chrysin and tectochrysin) undergo hydroxylation in the 4′-position in vivo but not during incubation with the intestinal microflora in vitro. 6. Observations on the metabolism of other compounds substituted in the 4′-position, e.g. epiafzelechin, pelargonin and the isoflavones, genistein, biochanin A, daidzein and formononetin, by the intestinal microflora of the rat are also reported.

Full text

PDF
901

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BACON J. S. D., EDELMAN J. The carbohydrates of the Jerusalem artichoke and other Compositae. Biochem J. 1951 Jan;48(1):114–126. doi: 10.1042/bj0480114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLAKLEY E. R., SIMPSON F. J. THE MICROBIAL METABOLISM OF CINNAMIC ACID. Can J Microbiol. 1964 Apr;10:175–185. doi: 10.1139/m64-025. [DOI] [PubMed] [Google Scholar]
  3. BOOTH A. N., DEEDS F., JONES F. T., MURRAY C. W. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956 Nov;223(1):251–257. [PubMed] [Google Scholar]
  4. BOOTH A. N., JONES F. T., DEEDS F. Metabolic and glucosuria studies on naringin and phloridzin. J Biol Chem. 1958 Aug;233(2):280–282. [PubMed] [Google Scholar]
  5. BOOTH A. N., MASRI M. S., ROBBINS D. J., EMERSON O. H., JONES F. T., DE EDS F. The metabolic fate of gallic acid and related compounds. J Biol Chem. 1959 Nov;234:3014–3016. [PubMed] [Google Scholar]
  6. BOOTH A. N., WILLIAMS R. T. Dehydroxylation of caffeic acid by rat and rabbit caecal contents and sheep rumen liquor. Nature. 1963 May 18;198:684–685. doi: 10.1038/198684a0. [DOI] [PubMed] [Google Scholar]
  7. BRAUN W., WHITTAKER V. P., LOTSPEICH W. D. Renal excretion of phlorizin and phlorizin glucoronide. Am J Physiol. 1957 Sep;190(3):563–569. doi: 10.1152/ajplegacy.1957.190.3.563. [DOI] [PubMed] [Google Scholar]
  8. BRAY H. G., CRADDOCK V. M., THORPE W. V. Metabolism of ethers in the rabbit. 2. Nuclear-substituted anisoles. Biochem J. 1955 Jun;60(2):225–232. doi: 10.1042/bj0600225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. BRAY H. G., HUMPHRIS B. G., THORPE W. V., WHITE K., WOOD P. B. Kinetic studies of the metabolism of foreign organic compounds. III. The conjugation of phenols with glucuronic acid. Biochem J. 1952 Nov;52(3):416–419. doi: 10.1042/bj0520416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BRAY H. G., THORPE W. V. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal. 1954;1:27–52. doi: 10.1002/9780470110171.ch2. [DOI] [PubMed] [Google Scholar]
  11. Batterham T. J., Hart N. K., Lamberton J. A. Metabolism of oestrogenic isoflavones in sheep. Nature. 1965 May 1;206(983):509–509. doi: 10.1038/206509a0. [DOI] [PubMed] [Google Scholar]
  12. Blackmore M. A., Quayle J. R. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J. 1970 Jun;118(1):53–59. doi: 10.1042/bj1180053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dacre J. C., Scheline R. R., Williams R. T. The role of the tissues and gut flora in the metabolism of [14C]homoprotocatechuic acid in the rat and rabbit. J Pharm Pharmacol. 1968 Aug;20(8):619–625. doi: 10.1111/j.2042-7158.1968.tb09823.x. [DOI] [PubMed] [Google Scholar]
  14. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-[14C] catechin in the rat and guinea pig. Biochem J. 1969 Dec;115(4):831–836. doi: 10.1042/bj1150831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J. 1968 Dec;110(3):449–456. doi: 10.1042/bj1100449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of flavone in the guinea pig. Biochem J. 1966 Feb;98(2):488–492. doi: 10.1042/bj0980488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Das N. P., Sothy S. P. Studies on flavonoid metabolism. Biliary and urinary excretion of metabolites of (+)-(U- 14 C)catechin. Biochem J. 1971 Nov;125(2):417–423. doi: 10.1042/bj1250417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Das N. P. Studies on flavonoid metabolism. Degradation of (plus)-catechin by rat intestinal contents. Biochim Biophys Acta. 1969 May 6;177(3):668–670. doi: 10.1016/0304-4165(69)90340-7. [DOI] [PubMed] [Google Scholar]
  19. Griffiths L. A. Studies on flavonoid metabolism. Identification of the metabolities of (+)-catechin in rat urine. Biochem J. 1964 Jul;92(1):173–179. doi: 10.1042/bj0920173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JURD L. A spectrophotometric method for the detection of o-dihydroxyl groups in flavonoid compounds. Arch Biochem Biophys. 1956 Aug;63(2):376–381. doi: 10.1016/0003-9861(56)90052-2. [DOI] [PubMed] [Google Scholar]
  21. MARSH C. A., ALEXANDER F., LEVVY G. A. Glucuronide decomposition in the digestive tract. Nature. 1952 Jul 26;170(4317):163–164. doi: 10.1038/170163a0. [DOI] [PubMed] [Google Scholar]
  22. NAKAGAWA Y., SHETLAR M. R., WENDER S. H. SPECTRAL IDENTIFICATION STUDIES OF PHENOLIC ACIDS USING ALUMINUM CHLORIDE. Anal Biochem. 1964 Mar;7:374–378. doi: 10.1016/0003-2697(64)90146-0. [DOI] [PubMed] [Google Scholar]
  23. NAKAGAWA Y., SHETLAR M. R., WENDER S. H. URINARY PRODUCTS FROM QUERCETIN IN NEOMYCIN-TREATED RATS. Biochim Biophys Acta. 1965 Feb 15;97:233–241. doi: 10.1016/0304-4165(65)90087-5. [DOI] [PubMed] [Google Scholar]
  24. Ranganathan S., Ramasarma T. Enzymic formation of p-hydroxybenzoate from p-hydroxycinnamate. Biochem J. 1971 May;122(4):487–493. doi: 10.1042/bj1220487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SWAIN T. The identification of coumarins and related compounds by filter-paper chromatography. Biochem J. 1953 Jan;53(2):200–208. doi: 10.1042/bj0530200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scheline R. R. The metabolism of (+)-catechin to hydroxyphenylvaleric acids by the intestinal microflora. Biochim Biophys Acta. 1970 Oct 27;222(1):228–230. doi: 10.1016/0304-4165(70)90373-9. [DOI] [PubMed] [Google Scholar]
  27. Scheline R. R. The metabolism of drugs and other organic compounds by the intestinal microflora. Acta Pharmacol Toxicol (Copenh) 1968;26(4):332–342. doi: 10.1111/j.1600-0773.1968.tb00453.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES