Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Aug;128(5):1221–1227. doi: 10.1042/bj1281221

The formation of pyrrolid-2-one-5-carboxylic acid at the N-terminus of immunoglobulin G heavy chain

D I Stott 1,*, A J Munro 1,
PMCID: PMC1174010  PMID: 4674626

Abstract

We propose that pyrrolid-2-one-5-carboxyl-tRNA is not involved in the initiation of protein synthesis in eukaryotic cells and that the N-terminal pyrrolid-2-one-5-carboxylic acid group of an IgG (immunoglobulin G) (that secreted by the mouse plasmacytoma Adj PC5) is formed by the enzymic cyclization of the N-terminal glutamine of the heavy chain of the completed IgG molecule and that the cyclization takes place inside the cell. We base these conclusions on the following evidence. (1) Pyrrolidonecarboxyl-tRNA was not found in incorporation experiments with rat liver preparations and [U-14C]-pyrrolidonecarboxylic acid, glutamic acid and glutamine, even though an incorporation extent of less than 2% of the total products could have been detected. (2) Double-labelling experiments showed that less than 8% of the nascent peptides of heavy chains (those obtained by precipitation by the antibody to Fc fragment) began with pyrrolidonecarboxylic acid. (3) Further double-labelling experiments showed that 60–66% of the heavy chains of the completed intracellular IgG molecule began with pyrrolidonecarboxylic acid after both 1 and 5h of labelling. (4) The IgG, after secretion by plasmacytoma Adj PC5, was found to have the sequence [unk]Glu- Val-Gln-Leu- at the N-termini of the heavy chains.

Full text

PDF
1221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREITENBACH J. W., DERKOSCH J., WESSELY F. Energetics of peptide formation. Nature. 1952 May 31;169(4309):922–922. doi: 10.1038/169922a0. [DOI] [PubMed] [Google Scholar]
  2. Baglioni C. The role of pyrrolidone carboxylic acid in the initiation of immunoglobulin peptide chains. Biochem Biophys Res Commun. 1970 Jan 23;38(2):212–219. doi: 10.1016/0006-291x(70)90698-4. [DOI] [PubMed] [Google Scholar]
  3. Beale D., Feinstein A. Studies on the reduction of a human 19S immunoglobulin M. Biochem J. 1969 Apr;112(2):187–194. doi: 10.1042/bj1120187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernfield M. R., Nestor L. The enzymatic conversion of glutaminyl-tRNA to pyrrolidone carboxylate-tRNA. Biochem Biophys Res Commun. 1968 Dec 9;33(5):843–849. doi: 10.1016/0006-291x(68)90238-6. [DOI] [PubMed] [Google Scholar]
  5. Brown J. C., Smith A. E. Initiator codons in eukaryotes. Nature. 1970 May 16;226(5246):610–612. doi: 10.1038/226610a0. [DOI] [PubMed] [Google Scholar]
  6. Chibnall A. C., Westall R. G. The estimation of glutamine in the presence of asparagine. Biochem J. 1932;26(1):122–132. doi: 10.1042/bj0260122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choules G. L., Zimm B. H. An acrylamide gel soluble in scintillation fluids: its application to electrophoresis at neutral and low pH. Anal Biochem. 1965 Nov;13(2):336–344. doi: 10.1016/0003-2697(65)90202-2. [DOI] [PubMed] [Google Scholar]
  8. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  9. Ikenaka T., Bammerlin H., Kaufmann H., Schmid K. The amino-terminal peptide of alpha-1-acid glycoprotein. J Biol Chem. 1966 Dec 10;241(23):5560–5563. [PubMed] [Google Scholar]
  10. Jackson R., Hunter T. Role of methionine in the initiation of haemoglobin synthesis. Nature. 1970 Aug 15;227(5259):672–676. doi: 10.1038/227672a0. [DOI] [PubMed] [Google Scholar]
  11. Knopf P. M., Parkhouse R. M., Lennox E. S. Biosynthetic units of an immunoglobulin heavy chain. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2288–2295. doi: 10.1073/pnas.58.6.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  13. MESSER M. Enzymatic cyclization of L-glutamine and L-glutaminyl peptides. Nature. 1963 Mar 30;197:1299–1299. doi: 10.1038/1971299a0. [DOI] [PubMed] [Google Scholar]
  14. MESSER M., OTTESEN M. ISOLATION AND PROPERTIES OF GLUTAMINE CYCLOTRANSFERASE OF DRIED PAPAYA LATEX. Biochim Biophys Acta. 1964 Nov 22;92:409–411. doi: 10.1016/0926-6569(64)90204-4. [DOI] [PubMed] [Google Scholar]
  15. Messer M., Ottesen M. Isolation and properties of glutamine cyclotransferase of dried papaya latex. C R Trav Lab Carlsberg. 1965;35(1):1–24. [PubMed] [Google Scholar]
  16. Moav B., Harris T. N. Pyrrolid-2-one-5 carboxylic acid involvement in the biosynthesis of rabbit immunoglobulin. Biochem Biophys Res Commun. 1967 Dec 15;29(5):773–776. doi: 10.1016/0006-291x(67)90285-9. [DOI] [PubMed] [Google Scholar]
  17. Munro A. J., Jackson R. J., Korner A. Studies on the nature of polysomes. Biochem J. 1964 Aug;92(2):289–299. doi: 10.1042/bj0920289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Notani G. W., Munro A. J., Knopf P. M. A charge difference between an intracellular and secreted mouse myeloma globulin. Biochem Biophys Res Commun. 1966 Nov 22;25(4):395–401. doi: 10.1016/0006-291x(66)90218-x. [DOI] [PubMed] [Google Scholar]
  19. O'Donnell I. J. Pyrrolid-2-one-5-carboxylic acid as an N-terminal group of the low-sulphur proteins of wool. Aust J Biol Sci. 1968 Dec;21(6):1327–1330. doi: 10.1071/bi9681327. [DOI] [PubMed] [Google Scholar]
  20. Press E. M., Piggot P. J., Porter R. R. The N- and c-terminal amino acid sequences of the heavy chain from a pathological human immunoglobulin IgG. Biochem J. 1966 May;99(2):356–366. doi: 10.1042/bj0990356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rush E. A., Starr J. L. The indirect incorporation of pyrrolidone carboxylic acid into transfer ribonucleic acid. Biochim Biophys Acta. 1970 Jan 21;199(1):41–55. doi: 10.1016/0005-2787(70)90693-3. [DOI] [PubMed] [Google Scholar]
  22. Shafritz D. A., Anderson W. F. Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature. 1970 Aug 29;227(5261):918–920. doi: 10.1038/227918a0. [DOI] [PubMed] [Google Scholar]
  23. Smith A. E., Marcker K. A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature. 1970 May 16;226(5246):607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  24. Summers D. F., Maizel J. V., Jr, Darnell J. E., Jr Evidence for virus-specific noncapsid proteins in poliovirus-infected HeLa cells. Proc Natl Acad Sci U S A. 1965 Aug;54(2):505–513. doi: 10.1073/pnas.54.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vickery H. B., Pucher G. W., Clark H. E. The determination of glutamine in the presence of asparagine. Biochem J. 1935 Dec;29(12):2710–2720. doi: 10.1042/bj0292710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wigle D. T., Dixon G. H. Transient incorporation of methionine at the N-terminus of protamine newly synthesized in trout testis cells. Nature. 1970 Aug 15;227(5259):676–680. doi: 10.1038/227676a0. [DOI] [PubMed] [Google Scholar]
  27. Wilkinson J. M., Press E. M., Porter R. R. The N-terminal sequence of the heavy chain of rabbit immunoglobulin IgG. Biochem J. 1966 Aug;100(2):303–308. doi: 10.1042/bj1000303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES