Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Aug;129(1):97–100. doi: 10.1042/bj1290097

Conformational changes in human lens proteins in cataract

John J Harding 1
PMCID: PMC1174045  PMID: 4646781

Abstract

The reactivity of protein thiol groups in human lens and the susceptibility of the proteins to tryptic digestion were investigated. Both were found to be greater in some cataractous lenses, indicating that lens proteins have unfolded during cataractogenesis. Almost all the tyrosine in the proteins of the normal human lens reacts with tetranitromethane and is therefore probably on the outside of the major lens proteins.

Full text

PDF
97

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang C. C., Yang C. C., Hamaguchi K., Nakai K., Hayashi K. Studies on the status of tyrosyl residues in cobrotoxin. Biochim Biophys Acta. 1971 Apr 27;236(1):164–173. doi: 10.1016/0005-2795(71)90161-9. [DOI] [PubMed] [Google Scholar]
  2. Christen P., Vallee B. L., Simpson R. T. Sequential chemical modifications of tyrosyl residues in alkaline phosphatase of Escherichia coli. Biochemistry. 1971 Apr 13;10(8):1377–1384. doi: 10.1021/bi00784a016. [DOI] [PubMed] [Google Scholar]
  3. Di Prisco G., D'Udine B., Scalenghe F. Amino and aromatic groups in enzymic catalysis. Biochem Soc Symp. 1970;31:107–146. [PubMed] [Google Scholar]
  4. Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
  5. Dische Z. The glycoproteins and glycolipoproteins of the bovine lens and their relation to albuminoid. Invest Ophthalmol. 1965 Oct;4(5):759–778. [PubMed] [Google Scholar]
  6. Dorner F. Human carbonic anhydrase B. Location of tyrosine residues that react with tetranitromethane. J Biol Chem. 1971 Oct 10;246(19):5896–5902. [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Harding J. J. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem J. 1970 May;117(5):957–960. doi: 10.1042/bj1170957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harding J. J. Nature and origin of the insoluble protein of rat lens. Exp Eye Res. 1969 Apr;8(2):147–156. doi: 10.1016/s0014-4835(69)80025-4. [DOI] [PubMed] [Google Scholar]
  10. Harding J. J. The nature and origin of the urea-insoluble protein of human lens. Exp Eye Res. 1972 Jan;13(1):33–40. doi: 10.1016/0014-4835(72)90122-4. [DOI] [PubMed] [Google Scholar]
  11. Helman M., Givol D. Isolation of nitrotyrosine-containing peptides by using an insoluble-antibody column. Biochem J. 1971 Dec;125(4):971–974. doi: 10.1042/bj1250971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacob H. S., Brain M. C., Dacie J. V., Carrell R. W., Lehmann H. Abnormal haem binding and globin SH group blockade in unstable haemoglobins. Nature. 1968 Jun 29;218(5148):1214–1217. doi: 10.1038/2181214a0. [DOI] [PubMed] [Google Scholar]
  13. Johansen J. T., Ottesen M., Svendsen I. Chemical derivatives of subtilisin Carlsberg with increased proteolytic activity. Biochim Biophys Acta. 1967 May 16;139(1):211–214. doi: 10.1016/0005-2744(67)90138-6. [DOI] [PubMed] [Google Scholar]
  14. Manski W., Behrens M., Martinez C. Immunochemical studies on albuminoid. Exp Eye Res. 1968 Jan;7(1):164–171. doi: 10.1016/s0014-4835(68)80041-7. [DOI] [PubMed] [Google Scholar]
  15. Myers B., 2nd, Glazer A. N. Spectroscopic studies of the exposure of tyrosine residues in proteins with special reference to the subtilisins. J Biol Chem. 1971 Jan 25;246(2):412–419. [PubMed] [Google Scholar]
  16. Nilsson A., Lindskog S. Hydrogen ion equilibria and the chemical modification of lysine and tyrosine residues in bovine carbonic anhydrase B. Eur J Biochem. 1967 Oct;2(3):309–317. doi: 10.1111/j.1432-1033.1967.tb00140.x. [DOI] [PubMed] [Google Scholar]
  17. Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
  18. Radda G. K. Enzyme and membrane conformation in biochemical control. Biochem J. 1971 May;122(4):385–396. doi: 10.1042/bj1220385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  20. Sokolovsky M., Vallee B. L. Azocarboxypeptidase: functional consequences of tyrosyl and histidyl modification. Biochemistry. 1967 Mar;6(3):700–708. doi: 10.1021/bi00855a008. [DOI] [PubMed] [Google Scholar]
  21. Van Heyningen R. The human lens. I. A comparison of cataracts extracted in Oxford (England) and Shikarpur (W. Pakistan). Exp Eye Res. 1972 Mar;13(2):136–147. doi: 10.1016/0014-4835(72)90026-7. [DOI] [PubMed] [Google Scholar]
  22. WALEY S. G., WATSON J. The action of trypsin on polylysine. Biochem J. 1953 Sep;55(2):328–337. doi: 10.1042/bj0550328. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES