Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Aug;129(1):135–140. doi: 10.1042/bj1290135

Ribosomal ribonucleic acid and ribosomal precursor ribonucleic acid in Anacystis nidulans

A Szalay 1,*, D Munsche 1, R Wollgiehn 1, B Parthier 1
PMCID: PMC1174049  PMID: 4630449

Abstract

The RNA of the blue–green alga Anacystis nidulans contains three ribosomal RNA species with molecular weights of 0.56×106, 0.9×106, and 1.1×106 if the RNA is extracted in the absence of Mg2+. The 0.9×106mol.wt. rRNA is extremely slowly labelled in 32P-incorporation experiments. This rRNA may be a cleavage product of the 1.1×106mol.wt. rRNA from the ribosomes of cells in certain physiological states (e.g. light-deficiency during growth). The cleavage of the 1.1×106mol.wt. rRNA during the extraction procedure can be prevented by the addition of 10mm-MgCl2. 32P-pulse-labelling studies demonstrate the rapid synthesis of two ribosomal precursor RNA species. One precursor RNA migrating slightly slower than the 1.1×106mol.wt. rRNA appears much less stable than the other precursor RNA, which shows the electrophoretic behaviour of the 0.7×106mol.wt. rRNA. Our observations support the close relationship between bacteria and blue–green algae also with respect to rRNA maturation. The conversion of the ribosomal precursor RNA species into 0.56×106- and 1.1×106-mol.wt. rRNA species requires Mg2+ in the incubation medium.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. Synthesis and maturation of ribosomal RNA in Escherichia coli. J Mol Biol. 1969 Dec 14;46(2):281–303. doi: 10.1016/0022-2836(69)90422-7. [DOI] [PubMed] [Google Scholar]
  2. Craig I. W., Carr N. G. Ribosomes from the blue-green alga Anabeana variabilis. Arch Mikrobiol. 1968;62(2):167–177. doi: 10.1007/BF00410403. [DOI] [PubMed] [Google Scholar]
  3. Dahlberg A. E., Peacock A. C. Studies of 16 and 23 S ribosomal RNA of Escherichia coli using composite gel electrophoresis. J Mol Biol. 1971 Jan 14;55(1):61–74. doi: 10.1016/0022-2836(71)90281-6. [DOI] [PubMed] [Google Scholar]
  4. Hecht N. B., Woese C. R. Separation of bacterial ribosomal ribonucleic acid from its macromolecular precursors by polyacrylamide gel electrophoresis. J Bacteriol. 1968 Mar;95(3):986–990. doi: 10.1128/jb.95.3.986-990.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Howland G. P., Ramus J. Analysis of blue-green and red algal ribosomal-RNAs by gel electrophoresis. Arch Mikrobiol. 1971;76(4):292–298. doi: 10.1007/BF00408526. [DOI] [PubMed] [Google Scholar]
  6. Lang N. J. The fine structure of blue-green algae. Annu Rev Microbiol. 1968;22:15–46. doi: 10.1146/annurev.mi.22.100168.000311. [DOI] [PubMed] [Google Scholar]
  7. Leaver C. J., Ingle J. The molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem J. 1971 Jun;123(2):235–243. doi: 10.1042/bj1230235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  9. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rodriguez-Lopez M., Vazquez D. Comparative studies on cytoplasmic ribosomes from algae. Life Sci. 1968 Mar 15;7(6):327–336. doi: 10.1016/0024-3205(68)90030-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES